Tìm giá trị nhỏ của biểu thức P=\(\dfrac{x}{\sqrt{x}-3}\) (với x=9)
Cho biểu thức $A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}$ và $B=\dfrac{3 \sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{4 x+6}{x-9}$ với $x \geq 0, x \neq 9$
1. Tình giá trị của biểu thức $A$ khi $x=\dfrac{1}{9}$.
2. Rút gọn biểu thức $B$.
3. Tìm giá trị của $x$ để biểu thức $P=A: B$ đạt giá trị nhỏ nhất.
1. \(x=\frac{1}{9}\) thỏa mãn đk: \(x\ge0;x\ne9\)
Thay \(x=\frac{1}{9}\) vào A ta có:
\(A=\frac{\sqrt{\frac{1}{9}}+1}{\sqrt{\frac{1}{9}}-3}=-\frac{1}{2}\)
2. \(B=...\)
\(B=\frac{3\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{4x+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{3x-9\sqrt{x}+x+3\sqrt{x}-4x-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
3. \(P=A:B=\frac{\sqrt{x}+1}{\sqrt{x}-3}:\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(P=\frac{\sqrt{x}+3}{-6}\)
Vì \(\sqrt{x}+3\ge3\forall x\)\(\Rightarrow\frac{\sqrt{x}+3}{-6}\le\frac{3}{-6}=-\frac{1}{2}\)
hay \(P\le-\frac{1}{2}\)
Dấu "=" xảy ra <=> x=0
toán lớp 9 khó zậy em đọc k hỉu 1 phân số
Có \(P=\dfrac{x-5}{\sqrt{x}-2}.\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\)
Với x < 9, tìm giá trị nhỏ nhất của biểu thức P
Với \(x< 9\) biểu thức này chỉ có max, ko có min
Để có min thì cần \(x>9\)
\(P=\dfrac{x-5}{\sqrt{x}-3}=\dfrac{x-9+4}{\sqrt{x}-3}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)+4}{\sqrt{x}-3}\)
\(P=\sqrt{x}+3+\dfrac{4}{\sqrt{x}-3}=\sqrt{x}-3+\dfrac{4}{\sqrt{x}-3}+6\)
\(P\ge2\sqrt{\left(\sqrt{x}-3\right).\dfrac{4}{\sqrt{x}-3}}+6=10\)
\(P_{min}=10\) khi \(\sqrt{x}-3=\dfrac{4}{\sqrt{x}-3}\Leftrightarrow\sqrt{x}-3=2\Rightarrow x=25\)
Nếu chưa học BĐT Cô-si như cách làm trên thì:
\(P=\dfrac{x-5}{\sqrt{x}-3}=\dfrac{x-10\sqrt{x}+25+10\sqrt{x}-30}{\sqrt{x}-3}\)
\(P=\dfrac{\left(\sqrt{x}-5\right)^2+10\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\dfrac{\left(\sqrt{x}-5\right)^2}{\sqrt{x}-3}+10\)
Do \(x>9\Rightarrow\sqrt{x}>3\Rightarrow\sqrt{x}-3>0\Rightarrow\dfrac{\left(\sqrt{x}-5\right)^2}{\sqrt{x}-3}>0\)
\(\Rightarrow P\ge10\)
Cho P = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{3x+3}{9-x}\) và Q = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\) với \(x\ge0;x\ne9\)
a) Rút gọn biểu thức P. Tính M = P : Q
b) Tìm giá trị nhỏ nhất của biểu thức A = \(x.M+\dfrac{4x+7}{\sqrt{x}+3}\)
a: \(P=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}=\dfrac{-3\left(\sqrt{x}+1\right)}{x-9}\)
\(M=\dfrac{-3\left(\sqrt{x}+1\right)}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{-3}{\sqrt{x}+3}\)
b: \(A=\dfrac{-3x+4x+7}{\sqrt{x}+3}=\dfrac{x+7}{\sqrt{x}+3}=\dfrac{x-9+16}{\sqrt{x}+3}\)
=>\(A=\sqrt{x}-3+\dfrac{16}{\sqrt{x}+3}=\sqrt{x}+3+\dfrac{16}{\sqrt{x}+3}-6>=2\sqrt{16}-6=2\)
Dấu = xảy ra khi x=1
1) Cho biểu thức A = \(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\) ( x > 0 )
a) Tính giá trị biểu thức A khi x = 9
b) Tìm x để A = 3
c) Tìm giá trị nhỏ nhất của A
2) Cho biểu thức B = \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\) (x ≥ 0; x ≠ 4; x ≠ 9)
a) Tính giá trị biểu thức tại x = 4 - \(2\sqrt{3}\)
b) Tìm x để B có giá trị âm
c) Tìm giá trị nhỏ nhất của B
3) Cho biểu thức C = \(\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\) với x > 0; x ≠ 1
a) Tìm x để C = 7
b) Tìm x để C > 6
c) Tìm giá trị nhỏ nhất của C – \(\sqrt{x}\)
4) Cho biểu thức D = \(\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}\) với x > 0 ; x ≠ 1
a) Tính giá trị biểu thức D biết \(x^2\) - 8x - 9 = 0
b) Tìm x để D có giá trị là \(\dfrac{1}{2}\)
c) Tìm x để D có giá trị nguyên
5) Cho biểu thức E = \(\dfrac{\sqrt{x}-1}{\sqrt{x}-3}\) với x ≥ 0 ; x ≠ 1 ; x ≠ 9
a) Tính giá trị biểu thức E tại x = 4 + \(2\sqrt{3}\)
b) Tìm điều kiện của x để E < 1
c) Tìm x nguyên để E có giá trị nguyên
Bài 5:
a: Thay \(x=4+2\sqrt{3}\) vào E, ta được:
\(E=\dfrac{\sqrt{3}+1-1}{\sqrt{3}+1-3}=\dfrac{\sqrt{3}}{\sqrt{3}-2}=-3-2\sqrt{3}\)
b: Để E<1 thì E-1<0
\(\Leftrightarrow\dfrac{\sqrt{x}-1-\sqrt{x}+3}{\sqrt{x}-3}< 0\)
\(\Leftrightarrow\sqrt{x}-3< 0\)
hay x<9
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)
c: Để E nguyên thì \(4⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3\in\left\{-2;1;2;4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{4;5;7\right\}\)
hay \(x\in\left\{16;25;49\right\}\)
Câu 2:
a) Ta có \(x=4-2\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-2\right)^2}=\sqrt{3}-2\)
Thay \(x=\sqrt{3}-1\) vào \(B\), ta được
\(B=\dfrac{\sqrt{3}-1-2}{\sqrt{3}-1+1}=\dfrac{\sqrt{3}-3}{\sqrt{3}}=1-\sqrt{3}\)
b) Để \(B\) âm thì \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\) mà \(\sqrt{x}+1\ge1>0\forall x\) \(\Rightarrow\sqrt{x}-2< 0\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\)
c) Ta có \(B=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=1-\dfrac{3}{\sqrt{x}+1}\)
Với mọi \(x\ge0\) thì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow\dfrac{3}{\sqrt{x}+1}\le3\Rightarrow B=1-\dfrac{3}{\sqrt{x}+1}\ge-2\)
Dấu "=" xảy ra khi \(\sqrt{x}+1=1\Leftrightarrow x=0\)
Vậy \(B_{min}=-2\) khi \(x=0\)
Cho biểu thức : A= \(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\) , với x ≥ 0 và x ≠ 9
a) Rút gọn biểu thức A.
b) Tìm gi trị của x để A = \(\dfrac{1}{3}\).
c) Tìm giá trị lớn nhất của biểu thức A.
a: \(A=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{x-9}=\dfrac{-3\sqrt{x}-9}{x-9}\)
\(=\dfrac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{-3}{\sqrt{x}-3}\)
b: A=1/3
=>\(\dfrac{-3}{\sqrt{x}-3}=\dfrac{1}{3}\)
=>căn x-3=-9
=>căn x=-6(loại)
c: căn x-3>=-3
=>3/căn x-3<=-1
=>-3/căn x-3>=1
Dấu = xảy ra khi x=0
\(A=\dfrac{2\sqrt{x}}{\sqrt{x}-3}\) và B=\(\dfrac{2}{\sqrt{x}-3}+\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{3-5\sqrt{x}}{9-x}\) với x ≥ 0,x ≠ 9
Tìm các giá trị nguyên của để biểu thức nhận giá trị nguyên.
tìm các giá trị nguyên của x để biểu thức P=A.B nhận giá trị nguyên
Cho hai biểu thức \(P=\dfrac{x+3}{\sqrt{x}-2}\) và \(Q=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}+\dfrac{5\sqrt{x}-2}{x-4}\) với \(x\ge0,\text{ }x\ne4\).
a) Tính giá trị của $P$ khi $x = 9$.
b) Rút gọn biểu thức $Q$.
c) Tìm giá trị của $x$ để biểu thức \(\dfrac{P}{Q}\) đạt giá trị nhỏ nhất.
a/ \(P=12\)
b/ \(Q=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c/ Ta có:
\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)
Dấu = xảy ra khi x = 3 (thỏa tất cả các điều kiện )
a. Thay x = 3 vào biểu thức P ta được :
\(p=\frac{x+3}{\sqrt{x}-2}=\frac{9+3}{\sqrt{9}-2}=12\)
b, \(Q=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{x-4}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-3\sqrt{x}+2+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c, Ta có :
\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)
Vậy GTNN \(\frac{P}{Q}=2\sqrt{3}\) khi và chỉ khi \(x=3\)
b) Q=√x−1√x+2 +5√x−2x−4
.
c) Ta có PQ =x+3√x−2 :√x√x−2 =x+3√x
⇒PQ =x+3√x =√x+3√x .
Áp dụng bất đẳng thức Cô-si ta có: √x+3√x ≥2.√√x.3√x =2√3.
Vậy , đẳng thức xảy ra .
Câu hỏi thuộc chủ đề: Rút gọn biểu thức chứa căn bậc hai
o l m . v n
Tìm giá trị nhỏ nhất của biểu thức P=\(\dfrac{x+2\sqrt{x}+26}{\sqrt{x}+1}\) với x≥0
A.10 B.5 C.20 D.9
Cho biểu thức P = \(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\) với x ≥0; x≠9
a) Rút gọn P
b) Tìm x để P đạt giá trị nhỏ nhất
\(a,P=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\\ P=\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\\ P=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}=\dfrac{-3}{\sqrt{x}+3}\\ b,P=\dfrac{-3}{\sqrt{x}+3}\ge\dfrac{-3}{0+3}=-1\\ P_{min}=-1\Leftrightarrow x=0\)