Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
8/5_06 Trương Võ Đức Duy
Xem chi tiết
Hồ Nhật Phi
5 tháng 4 2022 lúc 9:06

a) \(\dfrac{2-x}{3}-x-2\le\dfrac{x-17}{2}\) \(\Leftrightarrow\) \(6\left(\dfrac{2-x}{3}-x-2\right)\le6\left(\dfrac{x-17}{2}\right)\) \(\Leftrightarrow\) 4-2x-6x-12\(\le\)3x-51 \(\Leftrightarrow\) -2x-6x-3x\(\le\)-51-4+12 \(\Leftrightarrow\) -11x\(\le\)-43 \(\Rightarrow\) x\(\ge\)43/11.

b) \(\dfrac{2x+1}{3}-\dfrac{x-4}{4}\le\dfrac{3x+1}{6}-\dfrac{x-4}{12}\) \(\Leftrightarrow\) \(12\left(\dfrac{2x+1}{3}+\dfrac{4-x}{4}\right)\le12\left(\dfrac{3x+1}{6}+\dfrac{4-x}{12}\right)\) \(\Leftrightarrow\) 8x+4+12-3x\(\le\)6x+2+4-x \(\Leftrightarrow\) 8x-3x-6x+x\(\le\)2+4-4-12 \(\Leftrightarrow\) 0x\(\le\)-10 (vô lí).

Kiều Vũ Linh
5 tháng 4 2022 lúc 9:14

a) \(\dfrac{2-x}{3}-x-2\le\dfrac{x-17}{2}\)

\(\Leftrightarrow2\left(2-x\right)-6\left(x+2\right)\le3\left(x-17\right)\)

\(\Leftrightarrow4-2x-6x-12\le3x-51\)

\(\Leftrightarrow-11x\le-43\)

\(\Leftrightarrow x\ge\dfrac{43}{11}\)

Vậy S = {\(x\) | \(x\ge\dfrac{43}{11}\) }

b) \(\dfrac{2x+1}{3}-\dfrac{x-4}{4}\le\dfrac{3x+1}{6}-\dfrac{x-4}{12}\)

\(\Leftrightarrow4\left(2x+1\right)-3\left(x-4\right)\le2\left(3x+1\right)-\left(x-4\right)\)

\(\Leftrightarrow8x+4-3x+12\le6x+2-x+4\)

\(\Leftrightarrow0x\le-10\) (vô lý)

Vậy \(S=\varnothing\)

Lê Hương Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 2 2021 lúc 13:19

a) Ta có: \(2\left(3x+1\right)-4\left(5-2x\right)>2\left(4x-3\right)-6\)

\(\Leftrightarrow6x+2-20+8x>8x-6-6\)

\(\Leftrightarrow14x-18-8x+12>0\)

\(\Leftrightarrow6x-6>0\)

\(\Leftrightarrow6x>6\)

hay x>1

Vậy: S={x|x>1}

b) Ta có: \(9x^2-3\left(10x-1\right)< \left(3x-5\right)^2-21\)

\(\Leftrightarrow9x^2-30x+3< 9x^2-30x+25-21\)

\(\Leftrightarrow9x^2-30x+3-9x^2+30x-4< 0\)

\(\Leftrightarrow-1< 0\)(luôn đúng)

Vậy: S={x|\(x\in R\)}

An in
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 3 2022 lúc 23:05

1: \(\Leftrightarrow\dfrac{3+2x-2}{x-1}>0\)

\(\Leftrightarrow\dfrac{2x+1}{x-1}>0\)

=>x>1 hoặc x<-1/2

2: \(\Leftrightarrow\dfrac{1-6x-2}{3x+1}< =0\)

\(\Leftrightarrow\dfrac{6x+1}{3x+1}>=0\)

=>x>1/3 hoặc x<=-1/6

Uyên Nguyễn
Xem chi tiết
Ma Tiến Khôi
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 6 2023 lúc 8:47

2:

a: =>x-4>=0

=>x>=4

b: =>x+1>0

=>x>-1

Heo Peppa
Xem chi tiết
HaNa
18 tháng 9 2023 lúc 16:45

loading...  

Nguyễn Đức Trí
18 tháng 9 2023 lúc 19:35

a) \(\left(x+1\right)\left(x-1\right)\left(3x-6\right)>0\)

Lập bảng xét dấu ta được kết quả :

\(Bpt\Leftrightarrow\left[{}\begin{matrix}-1< x< 1\\x>2\end{matrix}\right.\)

b) \(\dfrac{x+3}{x-2}\le0\)

Lập bảng xét dấu ta được kết quả :

\(Bpt\Leftrightarrow-3\le x< 2\)

d) \(\dfrac{2x-5}{3x+2}< \dfrac{3x+2}{2x-5}\)

\(\Leftrightarrow\dfrac{2x-5}{3x+2}-\dfrac{3x+2}{2x-5}< 0\)

\(\Leftrightarrow\dfrac{\left(2x-5\right)^2-\left(3x+2\right)^2}{\left(3x+2\right)\left(2x-5\right)}< 0\)

\(\Leftrightarrow\dfrac{\left(2x-5+3x+2\right)\left(2x-5-3x-2\right)}{\left(3x+2\right)\left(2x-5\right)}< 0\)

\(\Leftrightarrow\dfrac{-\left(5x-3\right)\left(x+7\right)}{\left(3x+2\right)\left(2x-5\right)}< 0\)

Lập bảng xét dấu ta được kết quả :

\(Bpt\Leftrightarrow\left[{}\begin{matrix}-7< x< -\dfrac{2}{3}\\\dfrac{5}{3}< x< \dfrac{5}{2}\end{matrix}\right.\)

Heo Peppa
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 10 2023 lúc 10:24

loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  

MiMi -chan
Xem chi tiết
Nguyễn acc 2
1 tháng 3 2022 lúc 9:13

tách nhỏ câu hỏi ra nhé dài quá

fghj
Xem chi tiết
Hồng Phúc
16 tháng 1 2021 lúc 17:30

ĐK: \(x\ge2\)

\(\dfrac{\sqrt{x^2+1}-\sqrt{x+1}}{x^2+\sqrt{3x-6}}\ge0\)

\(\Leftrightarrow\sqrt{x^2+1}-\sqrt{x+1}\ge0\)

\(\Leftrightarrow\sqrt{x^2+1}\ge\sqrt{x+1}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1\ge0\\x^2+1\ge x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2-x\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-1\le x\le0\\x\ge1\end{matrix}\right.\)

Kết hợp điều kiện xác định ta được \(x\ge2\)