\(6\sqrt{4x+1}+2\sqrt{3-x}=3x+14\)
Giải phương trình \(6\sqrt{4x+1}+2\sqrt{3-x}=3x+14\)
ĐK: \(-\dfrac{1}{4}\le x\le3\)
\(pt\Leftrightarrow4x+1-6\sqrt{4x+1}+9+3-x-2\sqrt{3-x}+1=0\)
\(\Leftrightarrow\left(\sqrt{4x+1}-3\right)^2+\left(\sqrt{3-x}-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{4x+1}=3\\\sqrt{3-x}=1\end{matrix}\right.\)
\(\Leftrightarrow x=2\left(tm\right)\)
1) \(\sqrt{x^2-4x+5}+3=4x-x^2\)
2) \(4\sqrt{x^2-6+6}=x^2-6x +9\)
3) \(\sqrt{x^2-3x^3}+\sqrt{x^2-3x+6}=3\)
4) \(\sqrt[3]{2-x}=1-\sqrt{x-1}\)
Phương pháp 6. Biến đổi về dạng \(A^2=B^2\)
a \(x^2+4\sqrt{x+3}=3x+6\)
b \(4x^2+14x+11=4\sqrt{6x+10}\)
c \(4\sqrt{x+1}=x^2-5x+14\)
a) ĐKXĐ : \(x\ge-3\)\(pt\Leftrightarrow x^2-2x+1=x+3-4\sqrt{x+3}+4\Leftrightarrow\left(x-1\right)^2=\left(\sqrt{x+3}-2\right)^2\Leftrightarrow x-1=\sqrt{x+3}-2\Leftrightarrow x+1=\sqrt{x+3}\Leftrightarrow\left(x+1\right)^2=x+3\left(x\ge-1\right)\Leftrightarrow x^2+2x+1=x+3\Leftrightarrow x^2+x-2=0\Leftrightarrow\left[{}\begin{matrix}x=1\left(tmdk\right)\\x=-2\left(kotm\right)\end{matrix}\right.\)
Giải phương trình :\(6\sqrt{4x+1}+2\sqrt{3-x}=3x+14\)
Bạn tự tìm điều kiện xác định nha :3
\(6\sqrt{4x+1}+2\sqrt{3-x}=3x+14\)
\(\Leftrightarrow-\left[4x+1-6\sqrt{4x+1}+9+3-x-2\sqrt{3-x}+1\right]+3x+14=3x+14\)\(\Leftrightarrow-\left[\left(\sqrt{4x+1}-3\right)^2+\left(\sqrt{3-x}-1\right)^2\right]=0\)
\(\Leftrightarrow\left(\sqrt{4x+1}-3\right)^2+\left(\sqrt{3-x}-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{4x+1}-3=0\\\sqrt{3-x}-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{4x+1}=3\\\sqrt{3-x}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x+1=9\\3-x=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x=8\\x=2\end{matrix}\right.\Rightarrow x=2\)
Học tốt ạ
giai pt sau
\(\sqrt{3x-1}-\sqrt{x+2}.\sqrt{3x^2+7x+2}+4=4x-2\)
\(x^2-5x+3.\sqrt{2x-1}=2.\sqrt{14-2x}+5\)
\(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6\)
nhiều thế giải ko đổi đâu bạn
đkxđ : \(\frac{1}{2}\le x\le7\)
\(x^2-5x+3\sqrt{2x-1}=2\sqrt{14-2x}+5\)
\(\Leftrightarrow\left(x^2-5x\right)+3\left(\sqrt{2x-1}-3\right)=2\left(\sqrt{14-2x}-2\right)\)
\(\Leftrightarrow x\left(x-5\right)+\frac{3.\left(2x-10\right)}{\sqrt{2x-1}+3}+\frac{2.\left(2x-10\right)}{\sqrt{14-2x}+2}=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+\frac{6}{\sqrt{2x-1}+3}+\frac{4}{\sqrt{14-2x}+2}\right)=0\)
\(\Leftrightarrow x=5\)
còn bài a,c lười đánh lắm
Câu 2: Tìm x biết:
a. \(\sqrt{x-1}=2\)
b. \(\sqrt{3x+1}=\sqrt{4x-3}\)
c. \(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
d. \(\sqrt{x^2-4x+4}=\sqrt{6+2\sqrt{5}}\)
\(a,\Leftrightarrow x-1=4\Leftrightarrow x=5\\ b,\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\3x+1=4x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\x=4\left(tm\right)\end{matrix}\right.\Leftrightarrow x=4\\ c,ĐK:x\ge-5\\ PT\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\\ \Leftrightarrow3\sqrt{x+5}=6\\ \Leftrightarrow\sqrt{x+5}=3\\ \Leftrightarrow x+5=9\\ \Leftrightarrow x=4\left(tm\right)\)
\(d,\Leftrightarrow\sqrt{\left(x-2\right)^2}=\sqrt{\left(\sqrt{5}+1\right)^2}\\ \Leftrightarrow\left|x-2\right|=\sqrt{5}+1\\ \Leftrightarrow\left[{}\begin{matrix}x-2=\sqrt{5}+1\\2-x=\sqrt{5}+1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{5}+3\\x=1-\sqrt{5}\end{matrix}\right.\)
Giải phương trình:
\(6\sqrt{4x+1}+2\sqrt{3-x}=3x+14\)
\(ĐKXĐ:\frac{-1}{4}\le x\le3\)
\(PT\Leftrightarrow3x+14-6\sqrt{4x+1}-2\sqrt{3-x}=0\)
\(\Leftrightarrow\left(4x+1\right)-2.3\sqrt{4x+1}+9+\left(3-x\right)-3\sqrt{3-x}+1=0\)
\(\Leftrightarrow\left(\sqrt{4x+1}-3\right)^2+\left(\sqrt{3-x}-1\right)^2=0\)(1)
Mà \(\left(\sqrt{4x+1}-3\right)^2\ge0\forall x\);\(\left(\sqrt{3-x}-1\right)^2\ge0\forall x\)
\(\Rightarrow\)(1) xảy ra khi \(\hept{\begin{cases}\sqrt{4x+1}=3\\\sqrt{3-x}=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4x+1=9\\3-x=1\end{cases}}\Rightarrow x=2\left(tmđk\right)\)
Vậy nghiệm duy nhất của phương trình là 2
\(6\sqrt[]{4x+1}+2\sqrt[]{3-x}=3x+14\)
Ấn nhầm sorry Chờ làm lại
Giải các phương trình sau:
a, \(\left(x-3\right)^2+x^4=-y^2+6y-4\)
b, \(\sqrt{2x-3}+\sqrt{5-2x}-x^2+4x-6=0\)
c, \(4+4x-x^2=|x-1|+|x-2|+|2x-3|+|4x-14|\)
d, \(x^2-2x+3=\sqrt{2x^2-x}+\sqrt{1+3x-3x^2}\)
Câu a:
Ta có:
\((x-3)^2+x^4=-y^2+6y-4\)
\(\Leftrightarrow (x-3)^2+x^4+y^2-6y+4=0\)
\(\Leftrightarrow x^4+x^2-6x+9+y^2-6y+4=0\)
\(\Leftrightarrow x^4+x^2-6x+4+(y^2-6y+9)=0\)
\(\Leftrightarrow (x^4-2x^2+1)+3(x^2-2x+1)+(y^2-6y+9)=0\)
\(\Leftrightarrow (x^2-1)^2+3(x-1)^2+(y-3)^2=0\)
\(\Rightarrow (x^2-1)^2=(x-1)^2=(y-3)^2=0\)
\(\Rightarrow \left\{\begin{matrix} x=1\\ y=3\end{matrix}\right.\)
Vậy..........
Câu b:
ĐKXĐ: \(\frac{3}{2}\leq x\leq \frac{5}{2}\)
\(\sqrt{2x-3}+\sqrt{5-2x}-x^2+4x-6=0\)
\(\Leftrightarrow \sqrt{2x-3}+\sqrt{5-2x}=x^2-4x+6\)
Áp dụng BĐT Bunhiacopxky:
\(\text{VT}^2\leq (1+1)(2x-3+5-2x)=4\)
\(\Rightarrow \text{VT}\leq 2\)
Mà \(\text{VP}=x^2-4x+6=(x-2)^2+2\geq 2\)
Do đó để \(\text{VT}=\text{VP}\) thì \(\text{VT}=2=\text{VP}\)
Điều này xảy ra khi \(\left\{\begin{matrix} \sqrt{2x-3}=\sqrt{5-2x}\\ (x-2)^2=0\end{matrix}\right.\Rightarrow x=2\) (t/m)
Vậy pt có nghiệm duy nhất $x=2$
Câu c:
Áp dụng BĐT dạng \(|a|+|b|\geq |a+b|\) ta có:
\(\text{VP}\geq |(x-1)+(x-2)|+|2x-3|+|4x-14|=|2x-3|+|2x-3|+|2x-14|\)
\(=2(|2x-3|+|2x-7|)=2(|2x-3|+|7-2x|)\geq 2|2x-3+7-2x|=8\)
Và:
\(\text{VT}=4+4x-x^2=8-(x^2-4x+4)=8-(x-2)^2\leq 8\)
Do đó : \(\text{VT}\leq 8\leq \text{VP}\)
Dấu "=" xảy ra khi \((x-2)^2=0\Rightarrow x=2\)
Thử lại thấy đúng
Vậy PT có nghiệm duy nhất $x=2$
\(6\sqrt{4x+1}+2\sqrt{3-x}=3x+14\)
giải pt trên
ĐK: \(-\frac{1}{4}\le x\le3\)
Chuyển vế ta có
\(4x+1-2.\sqrt{4x+1}.3+9+3-x-2\sqrt{3-x}+1=0\)
\(\Leftrightarrow\left(\sqrt{4\text{ }x+1}-3\right)^2+\left(\sqrt{3-x}-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{4x+1}=3\\\sqrt{3-x}=1\end{cases}}\)
\(\hept{\begin{cases}4x+1=9\\3-x=1\end{cases}}\Leftrightarrow x=2\)(thỏa ĐK)
k giùm nha