Tìm nghiệm của đa thức sau
2x3- x2-2x+1
Tìm nghiệm của đa thức: B= (2x-1) (x2+1)
Tìm nghiệm của các đa thức sau:
x2 - 2
x(x - 2)
x2 - 2x
x(x2 + 1)
\(a,x^2-2=0\Leftrightarrow x^2-\left(\sqrt{2}\right)^2=0\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)
Vậy \(S=\left\{-\sqrt{2};\sqrt{2}\right\}\)
\(b,x\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy \(S=\left\{0;2\right\}\)
\(c,x^2-2x=0\Leftrightarrow x\left(x-2\right)\) phương trình như câu b,
\(d,x\left(x^2+1\right)\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=-1\left(voli\right)\end{matrix}\right.\)( voli là vô lí )
Vậy \(S=\left\{0\right\}\)
Vậy
Vậy
phương trình như câu b,
( voli là vô lí )
Vậy
Bài 3: cho đa thức P(x)= 5x3 - x4 + 2x - x2 + x4 + 2x2 - 5x3 - 3
a, thu gọn tìm bậc của đa thức
b, Chứng tỏ X=-3 ; x=1 là các nghiệm của đa thức P(x)
c, Tìm nghiệm của đa thức Q(x) biết Q(x) + P(x) = x2 - x
Cần gấp
a. cậu thu gọn bằng cách dùng t/c kết hợp và giao hoán
b. cậu thay từng giá vào biểu thức vừa được rút gọn để tìm
c. thì.... tớ ko biết
Cho hai đa thức f ( x ) = - x 2 - 2 x - 1 , g ( x ) = x 2 + 3 x - 1 . Tìm nghiệm cúa đa thức f ( x ) + g ( x ) là:
A. x = -2
B. x = -1
C. x = 1
D. x = 2
Ta có: f(x) + g(x) = x - 2. Cho x - 2 = 0 ⇒ x = 2. Chọn D
Bài 1: Tìm nghiệm của đa thức sau:
a) A(x)=x2-4x+4
b) B(x)=2x3+x2+2x+1
c) C(x)=|2x-3|- 1/3
Bài 2: Tìm giá trị nhỏ nhất của biểu thức sau:
a) x2-4x+5
b) -100/(x+1)2+10
(GIÚP MÌNH CẢ 2 BÀI NHÉ! )
Bài 2 :
a, \(x^2-4x+4+1=\left(x-2\right)^2+1\ge1\)
Dấu ''='' xảy ra khi x = 2
b, Ta có \(\left(x+1\right)^2+10\ge10\Rightarrow\dfrac{-100}{\left(x+1\right)^2+10}\ge-\dfrac{100}{10}=-10\)
Dấu ''='' xảy ra khi x = -1
Bài 1 :
a, Ta có \(A\left(x\right)=x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)
b, \(B\left(x\right)=x^2\left(2x+1\right)+\left(2x+1\right)=\left(x^2+1>0\right)\left(2x+1\right)=0\Leftrightarrow x=-\dfrac{1}{2}\)
c, \(C\left(x\right)=\left|2x-3\right|=\dfrac{1}{3}\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{3}+3=\dfrac{10}{3}\\2x=-\dfrac{1}{3}+3=\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)
Tìm nghiệm của đa thức H(x) = -x2 + 2x – 4.
Để đa thức \(H\left(x\right)\) có nghiệm thì \(-x^2+2x-4=0\)
\(\Rightarrow x^2-2x+4=0\)
\(\Rightarrow\left(x-2\right)^2=0\)
\(\Rightarrow x-2=0\)
\(\Rightarrow x=2\)
Bài 1: Cho hai đa thức P(x) = 5x3 – 3x + 7 – x;
Q(x) = –5x3 + 2x – 3 + 2x – x2 – 2.
a) Thu gọn hai đa thức P(x), Q(x) và xác định bậc của hai đa thức đó.
b) Tìm đa thức M(x) sao cho P(x) = M(x) – Q(x).
c) Tìm nghiệm của đa thức M(x).
`a,`
`P(x)=5x^3 - 3x + 7 - x`
`= 5x^3 +(-3x-x)+7`
`= 5x^3-4x+7`
Bậc: `3`
`Q(x)=-5x^3 + 2x - 3 + 2x - x^2 - 2`
`= -5x^3-x^2+(2x+2x)+(-3-2)`
`= -5x^3-x^2+4x-5`
Bậc: `3`
`b,`
`P(x)=M(x)-Q(x)`
`-> M(x)=P(x)+Q(x)`
`M(x)=(5x^3-4x+7)+(-5x^3-x^2+4x-5)`
`M(x)=5x^3-4x+7-5x^3-x^2+4x-5`
`M(x)=(5x^3-5x^3)-x^2+(-4x+4x)+(7-5)`
`M(x)=-x^2+2`
`c,`
`M(x)=-x^2+2=0`
`\leftrightarrow -x^2=0-2`
`\leftrightarrow -x^2=-2`
`\leftrightarrow x^2=2`
`\leftrightarrow `\(\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)
Vậy, nghiệm của đa thức là \(x=\left\{\sqrt{2};-\sqrt{2}\right\}\)
Cho các đa thức M(x)=-2x^3+4x+x^2-3 và N(x)= 2x^3+x2-5-4x 1) Tính P(x) = M(x) + N(x) 2) Tìm nghiệm của đa thức P(x) 3) Tìm đa thức Q(x) biết Q(x) + N(x) = M(x)
1: P(x)=M(x)+N(x)
=-2x^3+x^2+4x-3+2x^3+x^2-4x-5
=2x^2-8
2: P(x)=0
=>x^2-4=0
=>x=2 hoặc x=-2
3: Q(x)=M(x)-N(x)
=-2x^3+x^2+4x-3-2x^3-x^2+4x+5
=-4x^3+8x+2
Bài 1 Cho hai đa thức: P(x) = 4x3 – 3x + x2 + 7 + x
Q(x) =– 4x3 + 2x – 2 + 2x – x2 – 1
a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm dần của biến
b) Tính M(x) = P(x) + Q(x) và N(x) = P(x) – Q(x)
c) Tìm nghiệm của đa thức M(x)
a: \(P\left(x\right)=4x^3+x^2-2x+7\)
\(Q\left(x\right)=-4x^3-x^2+4x-3\)
b: \(M\left(x\right)=4x^3+x^2-2x+7-4x^3-x^2+4x-3=2x+4\)
\(N\left(x\right)=8x^3+2x^2-6x+10\)
c: Đặt M(x)=0
=>2x+4=0
hay x=-2
\(a,Q_{\left(x\right)}=-4x^3+2x-2+2x-x^2-1\\ Q_{\left(x\right)}=-4x^3-x^2+4x-3\\ P_{\left(x\right)}=4x^3-3x+x^2+7+x\\ P_{\left(x\right)}=4x^3+x^2-2x+7\)
\(b,M_{\left(x\right)}=P_{\left(x\right)}+Q_{\left(x\right)}\\ M_{\left(x\right)}=4x^3+x^2-2x+7-4x^3-x^2+4x-3\\ M_{\left(x\right)}=2x+4\)
\(N_{\left(x\right)}=4x^3+x^2-2x+7+4x^2+x^2-4x+3\\ N_{\left(x\right)}=8x^3+2x^2-6x+10\)
\(c,M_{\left(x\right)}=0\\ \Rightarrow2x+4=0\\ \Rightarrow2x=-4\\ \Rightarrow x=-2\)
a)\(P\left(x\right)=4x^3+x^2-2x+7\)
\(Q\left(x\right)=-4x^3-x^2+4x-3\)
b)\(M\left(x\right)=4x^3+x^2-2x+7-4x^3-x^2-4x+3\)
\(M\left(x\right)=-6x+10\)
\(N\left(x\right)=4x^3+x^2-2x+7+4x^3+x^2+4x-3\)
\(N\left(x\right)=8x^3+2x^2+2x+4\)
c) cho M(x) = 0
\(=>-6x+10=0\)
\(-6x=-10\Rightarrow x=-\dfrac{10}{-6}=\dfrac{5}{3}\)
giúp mình bài này
tìm nghiệm của đa thức f(x) = x2+2x+9
Ta có:
\(\Delta'=1-9=-8< 0\)
Vậy phương trình vô nghiệm
hay đa thức f(x) vô nghiệm