Cho hệ phương trình \(\left\{{}\begin{matrix}3x+y=2m+9\\x+y=5\end{matrix}\right.\) có nghiệm (x; y). Tìm m để biểu thức (xy+x-1) đạt giá trị lớn nhất.
Cho hệ phương trình \(\left\{{}\begin{matrix}3x+y=2m+9\\x+y=5\end{matrix}\right.\)với m là tham số
a.Giải hệ phương trình khi m=-1
b.Tìm các giá trị nguyên của m để hệ phương trình có nghiệm (x;y) thỏa mãn \(x^2+2y^2=18\)
a) Thay m=-1 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}3x+y=7\\x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=2\\x+y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=4\end{matrix}\right.\)
Vậy: Khi m=-1 thì (x,y)=(1;4)
b) Ta có: \(\left\{{}\begin{matrix}3x+y=2m+9\\x+y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+y=2m+9\\x=5-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3\left(5-y\right)+y=2m+9\\x=5-y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}15-3y+y=2m+9\\x=5-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2y=2m-6\\x=5-y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-m+3\\x=5-\left(-m+3\right)=5+m-3=m+2\end{matrix}\right.\)
Ta có: \(x^2+2y^2=18\)
\(\Leftrightarrow\left(m+2\right)^2+2\cdot\left(-m+3\right)^2=18\)
\(\Leftrightarrow m^2+4m+4+2\left(m^2-6m+9\right)-18=0\)
\(\Leftrightarrow m^2+4m-14+2m^2-12m+18=0\)
\(\Leftrightarrow3m^2-8m+4=0\)
\(\Leftrightarrow3m^2-2m-6m+4=0\)
\(\Leftrightarrow m\left(3m-2\right)-2\left(3m-2\right)=0\)
\(\Leftrightarrow\left(3m-2\right)\left(m-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3m-2=0\\m-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3m=2\\m=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{2}{3}\\m=2\end{matrix}\right.\)
cho hệ phương trình \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)(m là tham số ).Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn \(\left\{{}\begin{matrix}x\ge2\\y\ge1\end{matrix}\right.\)
Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)
=>\(m^2\ne1\)
=>\(m\notin\left\{1;-1\right\}\)
Khi \(m\notin\left\{1;-1\right\}\) thì \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y-2m=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y\left(-m^2+1\right)=-m^2+m\\x=m+1-my\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m^2-m}{m^2-1}=\dfrac{m\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\dfrac{m}{m+1}\\x=m+1-\dfrac{m^2}{m+1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m}{m+1}\\x=\dfrac{\left(m+1\right)^2-m^2}{m+1}=\dfrac{2m+1}{m+1}\end{matrix}\right.\)
Để \(\left\{{}\begin{matrix}x>=2\\y>=1\end{matrix}\right.\) thì \(\left\{{}\begin{matrix}\dfrac{2m+1}{m+1}>=2\\\dfrac{m}{m+1}>=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2\left(m+1\right)}{m+1}>=0\\\dfrac{m-m-1}{m+1}>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2m-2}{m+1}>=0\\\dfrac{-1}{m+1}>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-\dfrac{1}{m+1}>=0\\-\dfrac{1}{m+1}>=0\end{matrix}\right.\Leftrightarrow m+1< 0\)
=>m<-1
Giải hệ phương trình sau bằng cách cộng hệ số
1) \(\left\{{}\begin{matrix}x-y=5\\2x+y=11\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}3x+2y=1\\3x+y=2\end{matrix}\right.\)
3) \(\left\{{}\begin{matrix}x-y=2\\3x+2y=11\end{matrix}\right.\)
\(1,\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\2y+10+y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{16}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}3x=1-2y\\1-2y+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\3y+6+2y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
Tìm m để hệ bất phương trình có nghiệm duy nhất
a) \(\left\{{}\begin{matrix}2x-1\ge3\\x-m\le0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}m^2x\ge6-x\\3x-1\le x+5\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge x^2+7x+1\\2m\le8+5x\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}mx\le m-3\\\left(m+3\right)x\ge m-9\end{matrix}\right.\)
e)\(\left\{{}\begin{matrix}2m\left(x+1\right)\ge x+3\\4mx+3\ge4x\end{matrix}\right.\)
a.
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\le m\end{matrix}\right.\)
Hệ có nghiệm duy nhất \(\Leftrightarrow m=2\)
b.
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+1\right)x\ge6\\2x\le6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{6}{m^2+1}\\x\le3\end{matrix}\right.\)
Hệ có nghiệm duy nhất \(\Leftrightarrow\dfrac{6}{m^2+1}=3\)
\(\Leftrightarrow m=\pm1\)
c.
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-6x+9\ge x^2+7x+1\\5x\ge2m-8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{8}{13}\\x\ge\dfrac{2m-8}{5}\end{matrix}\right.\)
Pt có nghiệm duy nhất khi \(\dfrac{2m-8}{5}=\dfrac{8}{13}\Leftrightarrow m=\dfrac{72}{13}\)
d.
Hệ có nghiệm duy nhất khi:
TH1:
\(\left\{{}\begin{matrix}m>0\\\dfrac{m-3}{m}=\dfrac{m-9}{m+3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m^2-9=m^2-9m\end{matrix}\right.\) \(\Leftrightarrow m=1\)
TH2:
\(\left\{{}\begin{matrix}m+3< 0\\\dfrac{m-3}{m}=\dfrac{m-9}{m+3}\end{matrix}\right.\)
\(\Leftrightarrow m=1\) (ktm)
Vậy \(m=1\)
e.
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2m-1\right)x\ge-2m+3\\\left(4-4m\right)x\le3\end{matrix}\right.\)
Hệ có nghiệm duy nhất khi:
\(\left\{{}\begin{matrix}\left(2m-1\right)\left(4-4m\right)>0\\\dfrac{-2m+3}{2m-1}=\dfrac{3}{4-4m}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}< m< 1\\\left[{}\begin{matrix}m=\dfrac{3}{4}\\m=\dfrac{5}{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow m=\dfrac{3}{4}\)
Cho hệ phương trình:\(\left\{{}\begin{matrix}x-y=4+2m\\4x+y=3m-4\end{matrix}\right.\) (m là tham số)
Tìm m để hệ có nghiệm (x ; y) thỏa mãn điều kiện: xy = -5
x-y=4+2m và 4x+y=3m-4
=>5x=5m và x-y=2m+4
=>x=m và y=m-2m-4=-m-4
xy=-5
=>m(-m-4)=-5
=>m^2+4m=5
=>m^2+4m-5=0
=>(m+5)(m-1)=0
=>m=1 hoặc m=-5
Bài 2 : Cho hệ phương trình:
\(\left\{{}\begin{matrix}mx+y=5\left(1\right)\\2mx+3y=6\left(2\right)\end{matrix}\right.\)
Tìm m để hệ có nghiệm duy nhất(x;y) thỏa mãn:
(2m - 1)x + (m + 1)y = m (3)
Để hệ có nghiệm duy nhất thì \(\dfrac{m}{2m}\ne\dfrac{1}{3}\)
=>\(\dfrac{1}{2}\ne\dfrac{1}{3}\)(luôn đúng)
\(\left\{{}\begin{matrix}mx+y=5\\2mx+3y=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2mx+2y=10\\2mx+3y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-y=4\\mx+y=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-4\\mx=5-y=5-\left(-4\right)=9\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-4\\x=\dfrac{9}{m}\end{matrix}\right.\)
\(\left(2m-1\right)\cdot x+\left(m+1\right)\cdot y=m\)
=>\(\dfrac{9}{m}\left(2m-1\right)+\left(m+1\right)\cdot\left(-4\right)=m\)
=>\(\dfrac{9\left(2m-1\right)}{m}=m+4m+4=5m+4\)
=>m(5m+4)=18m-9
=>\(5m^2-14m+9=0\)
=>(m-1)(5m-9)=0
=>\(\left[{}\begin{matrix}m=1\\m=\dfrac{9}{5}\end{matrix}\right.\)
Cho hệ phương trình \(\left\{{}\begin{matrix}3x-y=2m-1\\x+2y=3m+2\end{matrix}\right.\) (với m là tham số)
Tìm m để hệ đã cho có nghiệm (x;y) thỏa mãn: x2 + y2 + 3 đạt giá trị nhỏ nhất.
\(\left\{{}\begin{matrix}3x-y=2m-1\\x+2y=3m+2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x-2y+x+2y=4m-2+3m+2\\x+2y=3m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x=7m\\x+2y=3m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m\\m+2y=3m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m\\2y=2m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=m+1\end{matrix}\right.\)
\(x^2+y^2+3\\ =m^2+\left(m+1\right)^2+3\\ =m^2+m^2+2m+1+3\\ =2m^2+2m+4\\ =2\left(m^2+m+2\right)\)
\(=2\left(m^2+m+\dfrac{1}{4}+\dfrac{7}{4}\right)\)
\(=2\left[\left(m+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\right]\)
\(=2\left(m+\dfrac{1}{2}\right)^2+\dfrac{7}{2}\ge\dfrac{7}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow m=-\dfrac{1}{2}\)
Vậy ...
cho hệ: \(\left\{{}\begin{matrix}mx-y=2m\\x-my=m+1\end{matrix}\right.\)
a. giải hệ phương trình khi m=2
b. tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn: x2 - y2=\(\dfrac{5}{2}\)
a: Khi m=2 thì hệ sẽ là;
2x-y=4 và x-2y=3
=>x=5/3 và y=-2/3
b: mx-y=2m và x-my=m+1
=>x=my+m+1 và m(my+m+1)-y=2m
=>m^2y+m^2+m-y-2m=0
=>y(m^2-1)=-m^2+m
Để phương trình có nghiệm duy nhất thì m^2-1<>0
=>m<>1; m<>-1
=>y=(-m^2+m)/(m^2-1)=(-m)/m+1
x=my+m+1
\(=\dfrac{-m^2+m^2+2m+1}{m+1}=\dfrac{2m+1}{m+1}\)
x^2-y^2=5/2
=>\(\left(\dfrac{2m+1}{m+1}\right)^2-\left(-\dfrac{m}{m+1}\right)^2=\dfrac{5}{2}\)
=>\(\dfrac{4m^2+4m+1-m^2}{\left(m+1\right)^2}=\dfrac{5}{2}\)
=>2(3m^2+4m+1)=5(m^2+2m+1)
=>6m^2+8m+2-5m^2-10m-5=0
=>m^2-2m-3=0
=>(m-3)(m+1)=0
=>m=3
cho hệ phương trình \(\left\{{}\begin{matrix}x-2y=m+2\\2x-y=2m+4\end{matrix}\right.\)
tìm m để hệ có nghiệm (x,y) sao cho x2-y2=2