Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Như Ngọc

Những câu hỏi liên quan
Nguyễn Bùi Đại Hiệp
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 12 2022 lúc 15:10

\(\dfrac{x^4+3x^3-17x^2+ax+b}{x^2+5x-3}\)

\(=\dfrac{x^4+5x^3-3x^2-2x^3-10x^2+6x-4x^2-20x+12+\left(a+14\right)x+b-12}{x^2+5x-3}\)

\(=x^2-2x-4+\dfrac{\left(a+14\right)x+b-12}{x^2+5x-3}\)

Để đây là phép chia hết cho a+14=0 và b-12=0

=>a=-14 và b=12

=>a+b=-2

Trần Phạm Minh Anh
Xem chi tiết
Hoàng Thu Huyền
Xem chi tiết
Komorebi
29 tháng 3 2018 lúc 18:33

b) 3(x - 2) = x(x - 2)

3(x - 2) - x(x - 2) = 0

=> (x - 2)(3 - x) = 0

TH1 : x - 2 = 0

=> x = 2

TH2 : 3 - x = 0

=> x = 3

Vậy x = 2 hoặc 3

c) (x + 3)7 = 4(x + 3) . 5

=> (x + 3)7 = 20(x + 3)

=> (x + 3)7 - 20(x + 3) = 0

\(\Rightarrow\left(x+3\right)\left[\left(x+3\right)^6-20\right]=0\)

TH1 : x + 3 = 0

=> x = -3

TH2 : (x + 3)6 - 20 = 0

=> (x + 3)6 = 20 (loại)

Vậy x = -3

d) x - 3.(x - 3) = x - 3

=> x - 3x + 9 = x - 3

=> x - 3x - x = -3 - 9

=> -3x = -12

=> x = 4

Vậy x = 4

Sagittarius Nhan Ma
Xem chi tiết
Nguyễn Anh Tú
12 tháng 1 2018 lúc 12:30

-(-4).(-3).|-5|.(-14).5

=4.(-3).5.(-14).5

=4200

-15.(-4).3.(-2).|-17|

=60.(-6).17

=-360.17

=-6120

Quân Lê
Xem chi tiết
thanh vu
Xem chi tiết
Nguyễn Hữu Niên
9 tháng 7 2017 lúc 16:46

A=(3x-3)-(10-6x)

  =3x-3-10+6x

  =6x+3x-3-10

  =9x-13

B=(4x-12)+(4x-2)+(4-3x)

  =4x-12+4x-2+3-3x

  =5x-11

Nhật Hạ
Xem chi tiết
Kamui
Xem chi tiết
Nguyễn Quang Chính
Xem chi tiết
Nguyễn Huy Tú
12 tháng 1 2017 lúc 17:35

b) Giải:
Ta có: \(4x+3⋮x-2\)

\(\Rightarrow4x-8+11⋮x-2\)

\(\Rightarrow4\left(x-2\right)+11⋮x-2\)

\(\Rightarrow11⋮x-2\)

\(\Rightarrow x-2\in\left\{1;-1;11;-11\right\}\)

\(\left[\begin{matrix}x-2=1\\x-2=-1\\x-2=11\\x-2=-11\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=3\\x=1\\x=13\\x=-9\end{matrix}\right.\)

Vậy \(x\in\left\{3;1;13;-9\right\}\)

Nguyễn Phương Uyên
8 tháng 2 2017 lúc 18:27

b.Ta có:(4x+3)=4x-4.2+8+3

=4(x-2)+11

Để(4x+3)chia hết cho (x-2)

#11chia hết cho (x-2)(#là khi và chỉ khi nhế!)

#x-2€ Ư(11)={±1;±11}

#x€{3;1;13;-9}

Vậy x€{3;1;13;-9}

Dân Nguyễn Chí
Xem chi tiết
Võ Đông Anh Tuấn
10 tháng 1 2018 lúc 17:33

1 ) \(\left(x-4\right)^2-25=0\)

\(\Leftrightarrow\left(x-4-5\right)\left(x-4+5\right)=0\)

\(\Leftrightarrow\left(x-9\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-1\end{matrix}\right.\)

2 ) \(\left(x-3\right)^2-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-3+x-1\right)\left(x-3-x+1\right)=0\)

\(\Leftrightarrow-2\left(2x-4\right)=0\)

\(\Leftrightarrow x=2.\)

3 ) \(\left(x^2-4\right)\left(2x+3\right)=\left(x^2-4\right)\left(x-1\right)\)

\(\Leftrightarrow\left(x^2-4\right)\left(2x+3-x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=-4\end{matrix}\right.\)

4 ) \(\left(x^2-1\right)-\left(x+1\right)\left(2-3x\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-1-2+3x\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(4x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{3}{4}\end{matrix}\right.\)

5 ) \(x^3+x^2+x+1=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(loại\right)\\x=-1.\end{matrix}\right.\)

6 ) \(x^3+x^2-x-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

7 ) \(2x^3+3x^2+6x+5=0\)

\(\Leftrightarrow2x^3+2x^2+x^2+x+5x+5=0\)

\(\Leftrightarrow2x^2\left(x+1\right)+x\left(x+1\right)+5\left(x+1\right)=0\)

\(\Leftrightarrow\left(2x^2+x+5\right)\left(x+1\right)=0\)

\(\Leftrightarrow x=-1.\)

8 ) \(x^4-4x^3-19x^2+106x-120=0\)

\(\Leftrightarrow x^4-4x^3-19x^2+76x+30x-120=0\)

\(\Leftrightarrow x^3\left(x-4\right)-19x\left(x-4\right)+30\left(x-4\right)=0\)

\(\Leftrightarrow\left(x^3-19x+30\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left(x^3-8-19x+38\right)\left(x-4\right)\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+4x+23\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

9 ) \(\left(x^2-3x+2\right)\left(x^2+15x+56\right)+8=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+7\right)\left(x+8\right)+8=0\)

\(\Leftrightarrow\left(x^2+7x-x-7\right)\left(x^2+8x-2x-16\right)+8=0\)

\(\Leftrightarrow\left(x^2+6x-7\right)\left(x^2+6x-16\right)+8=0\)

Đặt \(x^2+6x-7=t\)

\(\Leftrightarrow t\left(t-9\right)+8=0\)

\(\Leftrightarrow t^2-9t+8=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=8\\t=1\end{matrix}\right.\)

Khi t = 8 \(\Leftrightarrow x^2+6x-7=8\Leftrightarrow x^2+6x-15\Leftrightarrow\left[{}\begin{matrix}x=-3+2\sqrt{6}\\x=-3-2\sqrt{6}\end{matrix}\right.\)

Khi t = 1 \(\Leftrightarrow x^2+6x-7=1\Leftrightarrow x^2+6x-8=0\Leftrightarrow\left[{}\begin{matrix}x=-3+\sqrt{17}\\x=-3-\sqrt{17}\end{matrix}\right.\)

Vậy ........