tìm a,b ϵ Z biết 1/a-1/b=1/a-b
tìm a,b ϵ Z biết: a/7-1/4=1/b
\(\dfrac{a}{7}-\dfrac{1}{4}=\dfrac{1}{b}\)
\(\dfrac{4a-7}{28}=\dfrac{1}{b}\)
⇒(4a-7).b=1.28
(4a-7).b=28
⇒4a-7 và b ∈ Ư(28)={-28;-14;-7;-4;-2;-1;1;2;4;7;14;28}
Ta có bảng:
4a-7=-28 thì b=-1
a=-21/4 (loại)
4a-7=-1 thì b=-28
a=3/2 (loại)
4a-7=-14 thì b=-2
a=-7/4 (loại)
4a-7=-2 thì b=-14
a=5/4 (loại)
4a-7=-7 thì b=-4
a=0 (t/m)
4a-7=-4 thì b=-7
a=3/4 (loại)
4a-7=28 thì b=1
a=35/4 (loại)
4a-7=1 thì b=28
a=2 (t/m)
4a-7=14 thì b=2
a=21/4 (loại)
4a-7=2 thì b=14
a=9/4 (loại)
4a-7=4 thì b=7
a= 11/4 (loại)
4a-7=7 thì b=4
a= 7/2 (loại)
Vậy (a;b)=(0;-4);(2;28)
Bài 4:(chi tiết)
a) Tìm a ϵ Z để -13/a + 7/a là số nguyên.
b) Tìm b ϵ Z để 2b-3/15 + b+1/5 là số nguyên
a: Để -13/a+7/a là số nguyên thì \(a\inƯ\left(-6\right)\)
hay \(a\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
b: \(\dfrac{2b-3}{15}+\dfrac{b+1}{5}=\dfrac{2b-3+3b+3}{15}=\dfrac{5b}{15}=\dfrac{b}{3}\)
Để b/3 là số nguyên thì b=3k(k là số nguyên)
Cho A= \(\dfrac{19n+1}{2n+3}\) . Tìm n để
a) A là phân số
b) Tìm n ϵ Z để A ϵ z
câu 1 : tìm a,b ϵ Z biết : \(\dfrac{a}{3}=\dfrac{b}{2}=\dfrac{c}{5}\) và a - b + 2c = 77
câu 2 : (x\(^n\))\(^m\) = ?
Câu 1
Ta có: \(\dfrac{a}{3}=\dfrac{b}{2}=\dfrac{2c}{10}\) và a-b+2c=77
\(\dfrac{a-b+2c}{3-2+10}=\dfrac{77}{11}=7\)
\(\dfrac{a}{3}=7\) ⇒ a=21
\(\dfrac{b}{2}=7\) ⇒ b=14
\(\dfrac{c}{5}=7\) ⇒ c=35
Giải chi tiết nha mình cần gấp!Thanks!!!
Bài 4:
a) Tìm a ϵ Z để -13/a + 7/a là số nguyên.
b) Tìm b ϵ Z để 2b-3/15 + b+1/5 là số nguyên
a: \(A=\dfrac{-13}{a}+\dfrac{7}{a}=\dfrac{-6}{a}\)
Để A là số nguyên thì \(a\inƯ\left(-6\right)\)
hay \(a\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
b: \(B=\dfrac{2b-3}{15}+\dfrac{b+1}{5}=\dfrac{2b-3+3b+3}{15}=\dfrac{5b}{15}=\dfrac{b}{3}\)
Để B là số nguyên thì b chia hết cho 3
hay b=3k, với k là số nguyên
Tìm x để
a) A=\(\dfrac{x^2+3x-1}{x+2}\) có giá trị là số nguyên (x ϵ Z)
b) B=\(\dfrac{x^2+x+3}{x+1}\) có giá trị là số nguyên (x ϵ Z)
a: ĐểA nguyên thì x^2+2x+x+2-3 chia hết cho x+2
=>-3 chia hết cho x+2
=>x+2 thuộc {1;-1;3;-3}
=>x thuộc {-1;-3;1;-5}
b: B nguyên khi x^2+x+3 chia hết cho x+1
=>3 chia hết cho x+1
=>x+1 thuộc {1;-1;3;-3}
=>x thuộc {0;-2;2;-4}
Tìm x, y ϵ Z biết:
a) (x-2).(y+1)= 7
b) (2x-1)y -2x=1=3
a) (x - 2)(y + 1) = 7
=> x - 2, y + 1 ∈ Ư(7)
Vì x, y ∈ Z => x - 2, y + 1 ∈ Z
=> x - 2, y + 1 ∈ {1; -1; 7; -7}
Lập bảng giá trị:
x - 2 | 1 | 7 | -1 | -7 |
y + 1 | 7 | 1 | -7 | -1 |
x | 3 | 9 | 1 | -5 |
y | 6 | 0 | -8 | -2 |
Đối chiếu điều kiện x, y ∈ Z
=> Các cặp (x, y) cần tìm là:
(3; 6); (9; 0); (1; -8); (-5; -2)
(x-2)(y+1) = 7
=> x-2 và y+1 thuộc Ư(7) = {-1; 1; -7; 7}
ta có bảng :
x-2 | -1 | 1 | -7 | 7 |
y+1 | -7 | 7 | -1 | 1 |
x | 1 | 3 | -5 | 9 |
y | -8 | 6 | -2 | 0 |
vậy_
Bài 1: Tìm n ϵ Z, biết :
a, n + 1 ϵ Ư ( n2 + 2n - 3 )
b, n2 + 2 ϵ B ( n2 + 1 )
c, 2n + 3 ϵ B ( n + 1 )
a) \(n+1\inƯ\left(n^2+2n-3\right)\)
\(\Leftrightarrow n^2+2n-3⋮n+1\)
\(\Leftrightarrow n\left(n+1\right)+n-3⋮n+1\)
Vì \(n\left(n+1\right)⋮n+1\Rightarrow n-3⋮n+1\)
\(\Leftrightarrow n+1-4⋮n+1\)
Vì \(n+1⋮n+1\Rightarrow-4⋮n+1\Rightarrow n+1\inƯ\left(-4\right)=\left\{-1;1;-2;2;-4;4\right\}\)
Ta có bảng sau:
\(n+1\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-4\) | \(4\) |
\(n\) | \(-2\) | \(0\) | \(-3\) | \(1\) | \(-5\) | \(3\) |
Vậy...
b) \(n^2+2\in B\left(n^2+1\right)\)
\(\Leftrightarrow n^2+2⋮n^2+1\)
\(\Leftrightarrow n^2+1+1⋮n^2+1\)
Vì \(n^2+1⋮n^2+1\) nên \(1⋮n^2+1\Rightarrow n^2+1\inƯ\left(1\right)=\left\{-1;1\right\}\)
Ta có bảng sau:
\(n^2+1\) | \(-1\) | \(1\) |
\(n\) | \(\sqrt{-2}\) (vô lý, vì 1 số ko âm mới có căn bậc hai) |
\(0\) (tm) |
Vậy \(n=0\)
c) \(2n+3\in B\left(n+1\right)\)
\(\Leftrightarrow2n+3⋮n+1\)
\(\Leftrightarrow2n+2+1⋮n+1\)
\(\Leftrightarrow2\left(n+1\right)+1⋮n+1\)
Vì \(2\left(n+1\right)⋮n+1\) nên \(1⋮n+1\Rightarrow n+1\inƯ\left(1\right)=\left\{-1;1\right\}\)
Ta có bảng sau:
\(n+1\) | \(-1\) | \(1\) |
\(n\) | \(-2\) | \(0\) |
Vậy...
a) n+1∈Ư(n2+2n−3)n+1∈Ư(n2+2n−3)
⇔n2+2n−3⋮n+1⇔n2+2n−3⋮n+1
⇔n(n+1)+n−3⋮n+1⇔n(n+1)+n−3⋮n+1
Vì n(n+1)⋮n+1⇒n−3⋮n+1n(n+1)⋮n+1⇒n−3⋮n+1
⇔n+1−4⋮n+1⇔n+1−4⋮n+1
Vì n+1⋮n+1⇒−4⋮n+1⇒n+1∈Ư(−4)={−1;1;−2;2;−4;4}n+1⋮n+1⇒−4⋮n+1⇒n+1∈Ư(−4)={−1;1;−2;2;−4;4}
Ta có bảng sau:
n+1n+1 | −1−1 | 11 | −2−2 | 22 | −4−4 | 44 |
nn | −2−2 | 00 | −3−3 | 11 | −5−5 | 33 |
Vậy...
b) n2+2∈B(n2+1)n2+2∈B(n2+1)
⇔n2+2⋮n2+1⇔n2+2⋮n2+1
⇔n2+1+1⋮n2+1⇔n2+1+1⋮n2+1
Vì n2+1⋮n2+1n2+1⋮n2+1 nên 1⋮n2+1⇒n2+1∈Ư(1)={−1;1}1⋮n2+1⇒n2+1∈Ư(1)={−1;1}
Ta có bảng sau:
n2+1n2+1 | −1−1 | 11 |
nn | √−2−2 (vô lý, vì 1 số ko âm mới có căn bậc hai) |
00 (tm) |
Vậy n=0n=0
c) 2n+3∈B(n+1)2n+3∈B(n+1)
⇔2n+3⋮n+1⇔2n+3⋮n+1
⇔2n+2+1⋮n+1⇔2n+2+1⋮n+1
⇔2(n+1)+1⋮n+1⇔2(n+1)+1⋮n+1
Vì 2(n+1)⋮n+12(n+1)⋮n+1 nên 1⋮n+1⇒n+1∈Ư(1)={−1;1}1⋮n+1⇒n+1∈Ư(1)={−1;1}
Ta có bảng sau:
n+1n+1 | −1−1 | 11 |
nn | −2−2 | 00 |
Tìm n ϵ Z để A = ( 3n3 + 10n2-5)⋮B=(3n+1)
=>3n^3+n^2+9n^2-1-4 chia hết cho 3n+1
=>\(3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{0;-1;1\right\}\)