Chứng minh rằng với mọi số thực a , b tùy ý, ta có : a4 + b4 ≥ a3b + b3a
a) chứng minh rằng a2 + ab + b2 >= 0 với mọi số thực a , b ; b) chứng minh rằng với 2 số thực a , b tùy ý , ta có a4 + b4 >= a3b + ab3
a)\(a^2+ab+b^2=a^2+\dfrac{2ab}{2}+\left(\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\)
\(=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\ge0\forall a,b\)
b)\(a^4+b^4\ge a^3b+ab^3\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a^3-b^3\right)\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\forall a,b\)
Cho bốn số thực a, b, x, y thỏa mãn a + b = x + y và ab = xy. Chứng minh rằng a4 + b4 = x4 + y4.
CM: a4+b4≥a3b+ab3 (∀a,b)
\(a^4+b^4-a^3b-ab^3=a^3\left(a-b\right)-b^3\left(a-b\right)=\left(a-b\right)\left(a^3-b^3\right)=\left(a-b\right)\left(a-b\right)\left(a^2+ab+b^2\right)=\left(a-b\right)^2\left(a^2+ab+b^2\right)\)
Có: \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\\a^2+ab+b^2>0\end{matrix}\right.\)
\(\Rightarrow a^4+b^4-a^3b-ab^3\ge0\)
\(\Rightarrow a^4+b^4\ge a^3b+ab^3\)
Áp dụng BĐT cosi với 2 số không âm:
`a^4+b^4+b^4+b^4>=4\root4{a^4b^12}=4|ab^3|>=4ab^3`
Hoàn toàn tương tự:
`b^4+a^4+a^4+a^4>=4a^3b`
`=>a^4+b^4+b^4+b^4+b^4+a^4+a^4+a^4>=4ab^3+4a^3b`
`<=>4(a^4+b^4)>=4(ab^3+a^3b)`
`<=>a^4+b^4>=ab^3+a^3b`
Một quân mã cần di chuyển từ A đến B trên bàn cờ vua \(8\times8\). Chứng minh rằng với mọi vị trí tùy ý của A và B, luôn có cách để quân mã thực hiện hành trình với ít hơn hoặc bằng 6 bước.
Chơi cờ thoai cơ mà áp lực ngang zậy đó -)
Chứng minh rằng: với 4 số a,b,c,d tùy ý ta có:
\(a^2+b^2+c^2+d^2\ge ab+ac+ad\)
Ta có \(a^4+b^4=\left(\left(a+b\right)^2-2ab\right)^{^2}—2\left(ab\right)^2\). Vậy \(a^4-b^4\)=?
Em không cần phải chứng minh gì đâu ạ. Nhưng ai cho em biết khai triển của đa thức a4 - b4 để áp dụng tính toán nhanh như a4 + b4 với ạ
Lời giải:
Kiểu như bạn muốn biến đổi $a^4-b^4$ về dạng có liên quan đến $a+b,ab$ ấy hả?
$a^4-b^4=(a^2-b^2)(a^2+b^2)=(a-b)(a+b)[(a+b)^2-2ab]$
Nếu $a^4\geq b^4$ thì: $a^4-b^4=\sqrt{(a-b)^2}(a+b)[(a+b)^2-2ab]$
$=\sqrt{(a+b)^2-4ab}(a+b)[(a+b)^2-2ab]$
Nếu $a^4< b^4$ thì $a^4-b^4=-\sqrt{(a+b)^2-4ab}(a+b)[(a+b)^2-2ab]$
chứng minh rằng Với 4 số a,b,c,d tùy ý ta có a2+b2+c2+d2>ab+ac+ad
chứng minh rằng với mọi số thực a, b ta có |a ± b| ≥ |a| - |b|.
chứng minh rằng với mọi số thực a, b ta có |a ± b| ≥ |a| - |b|.