Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tiêu Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 12 2021 lúc 19:59

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

Ta có: AC⊥CB

OD⊥CB

Do đó: AC//OD

Nguyễn Thị Hường
Xem chi tiết
Võ nguyễn anh triệu
Xem chi tiết
Võ nguyễn anh triệu
10 tháng 1 2021 lúc 21:47

Mong các bạn giúp mk cái hihi

Trần Hiếu
Xem chi tiết
An Thy
9 tháng 6 2021 lúc 10:18

1) Trong (O) có CD là dây cung không đi qua (O) và H là trung điểm CD

\(\Rightarrow OH\bot CD\Rightarrow\angle OHI=90=\angle OAI\Rightarrow OHAI\) nội tiếp

Ta có: \(\angle OAI+\angle OBI=90+90=180\Rightarrow OAIB\) nội tiếp 

\(\Rightarrow O,H,A,B,I\) cùng thuộc 1 đường tròn

2) Vì IA,IB là tiếp tuyến \(\Rightarrow IB=IA=OA=OB\Rightarrow AOBI\) là hình thoi

có \(\angle OAI=90\Rightarrow AOBI\) là hình vuông

AB cắt OI tại E.Dễ chứng minh được E là trung điểm AB

Ta có: \(AB=\sqrt{OA^2+OB^2}=\sqrt{2}R\Rightarrow AE=\dfrac{\sqrt{2}}{2}R\)

\(\Rightarrow\) bán kính của (AOBI) là \(\dfrac{\sqrt{2}}{2}R\)

\(\Rightarrow\) diện tích của (AOBI) là \(\left(\dfrac{\sqrt{2}}{2}R\right)^2.\pi=\dfrac{1}{2}\pi R^2\)

3) OH cắt AB tại F

Ta có: \(\angle IEF=\angle IHF=90\Rightarrow IEHF\) nội tiếp

\(\Rightarrow OH.OF=OE.OI\) (cái này chỉ là đồng dạng thôi,bạn tự chứng minh nha)

mà \(OE.OI=OB^2=R^2\Rightarrow OF=\dfrac{R^2}{OH}\)

mà H cố định \(\Rightarrow\) F cố định \(\Rightarrow AB\) đi qua điểm F cố định undefined

 

Xuân Mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 4 2021 lúc 0:00

1: Xét (O) có 

\(\widehat{ABC}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{ABC}=90^0\)

Xét (O') có 

\(\widehat{ABD}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{ABD}=90^0\)

Ta có: \(\widehat{ABC}+\widehat{ABD}=\widehat{CBD}\)

\(\Leftrightarrow\widehat{CBD}=90^0+90^0=180^0\)

hay C,B,D thẳng hàng(đpcm)

H T T
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 6 2023 lúc 13:52

a: góc ONM+góc OPM=180 độ

=>ONMP nội tiếp

b: góc OHM=góc ONM=90 độ

=>OHNM nội tiếp

=>góc MON=góc MHN

Quỳnh vũ
Xem chi tiết

1: Xét tứ giác KAOB có \(\widehat{KAO}+\widehat{KBO}=90^0+90^0=180^0\)

nên KAOB là tứ giác nội tiếp

2: Xét (O) có

\(\widehat{KAC}\) là góc tạo bởi tiếp tuyến AK và dây cung AC

\(\widehat{ADC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{KAC}=\widehat{ADC}\)

Xét ΔKAC và ΔKDA có

\(\widehat{KAC}=\widehat{KDA}\)

\(\widehat{AKC}\) chung

Do đó: ΔKAC đồng dạng với ΔKDA

=>\(\dfrac{KA}{KD}=\dfrac{KC}{KA}\)

=>\(KA^2=KC\cdot KD\)

Xét (O) có

KA,KB là các tiếp tuyến

Do đó: KA=KB

=>K nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OK là đường trung trực của AB

=>OK\(\perp\)AB tại M và M là trung điểm của AB

Xét ΔOAK vuông tại A có AM là đường cao

nên \(KM\cdot KO=KA^2\)

=>\(KA^2=KM\cdot KO=KC\cdot KD\)

 

Long Duy
Xem chi tiết
Lê Nguyễn Ngân Nhi
Xem chi tiết