A. 6x³ + 6x² ; B. x² - y² + 4y - 4 .
rút gọn biểu thức: a.(a+b)^3 -(a-b)^3 -2b^3
b.(6x+1)^2+(6x-1)^2-2(1+6x)(6x-1)
\(a,=a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3ab^2+b^3-2b^3=6a^2b\\ b,=\left(6x+1-6x+1\right)^2=2^2=4\)
tinh gia tri cua A tai x=5 ma ko thay so truc tiep
\(A=2015-6x+6x^2-6x^3+6x^4-6x^5+x^6\)
Nguyễn Đình Dũng vs Minh Hiền không khác nhau tẹo nào
a)(6x mũ 2+13x-5)
b)(6x+1)mũ 2 + (6x-1)mũ 2-2(1+6x)(6x-1)
c)Chứng minh:x mũ 2-2x +3 ≥ 2 với mọi số thực x
3. rút gọn biểu thức
a. ( 6x + 1 ) ^2 + (6x - 1 )^2 - 2(1+ 6x ) (6x-1 )
a. ( 6x + 1 ) 2 + (6x - 1 )2 - 2(1+ 6x ) (6x-1 )
= (6x+1)2-2(6x+1)(6x-1)+(6x-1)2
=[(6x+1)-(6x-1)]2
= (6x+1-6x+1)2
= 22
=4
1/cho a+b+c=0 . cmr: a^3+b^3+c^3=3abc
2/ Cho A=x6-6x5+6x4-6x3+6x2-6x+6.Tính giá trị của A khi x=5
1.ta có:
x^3 + y^3 + z^3 - 3xyz = (x+y)^3 + z^3 - 3x^2y - 3xy^2 - 3xyz
= (x+y)^3 + z^3 - 3xy(x + y + z)
= (x+y+z)^3 - 3(x+y)^2.z - 3(x+y)z^2 - 3xy(x + y + z)
= (x+y+z)^3 - 3(x+y)z(x+ y + z) - 3xy(x + y + z)
=(x+y+z)[(x+y+z)^2 - 3(x+y)z - 3xy]
với x+y+z = 0 => x^3 + y^3 + z^3 - 3xyz = 0 => x^3 + y^3 + z^3 = 3xyz
2.
x=5
=>6=x+1
=> A=x6-6x5+6x4-6x3+6x2-6x+6=x6-(x+1).x5+(x+1)x4-(x+1)x3+(x+1)x2-(x+1)x+(x+1)
=x6-x6-x5+x5-x4+x4-x3+x3-x2+x2-x+x+1
=1
vậy A=1 khi x=5
1,
\(a^3+b^3+c^3=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc=3abc\)
2,
\(A=\left(x-1\right)\left(x-5\right)\left(x^4+x^2+1\right)+1\)
x=5 thì A=1
a+b+c=0 =>a+b= -c
=> (a+b)^3=-c^3
=>a^3+b^3+c^3= -3ab(a+b)
=>a^3+b^3+c^3=3abc (vì a+b=c)
=> dpcm
a) (6x+1)2+(6x-1)2+2(6x+1)(6x-1)
b)(6x-1)2+(6x+1)2-(12x+2)(6x-1)
c)(ac+bd)2+(ad-bc)2
d)(ac-bd)(ac+bd)
a) Ta có:(6x+1)^2 +(6x-1)^2 +2(6x+1)(6x-1) =[(6x+1)+(6x-1)]^2 =(12x)^2=(12^2)(x^2)=144.x^2
b) Ta có:(6x+1)^2 +(6x-1)^2 -(12x+2)(6x-1)=(6x+1)^2 +(6x-1)^2 -2(6x+1)(6x-1)=[(6x+1)-(6x-1)]^2=2^2=4
c) Ta có:(ac+bd)^2 +(ad-bc)^2=(ac)^2 +2(ac)(bd) +(bd^2) +(ad)^2 -2(ad)(bc) +(bc)^2
=a^2.c^2 +2abcd +b^2 d^2 +a^2.d^2 -2abcd +b^2.c^2=a^2.c^2 +b^2.d^2 +a^2.d^2 +b^2.c^2
=(a^2 +b^2)(c^2 +d^2)
d) Ta có:(ac-bd)(ac+bd)=(ac)^2 -(bd)^2=a^2.c^2 -b^2.d^2
a) (6x+1)2+(6x-1)2+2(6x+1)(6x-1)
b)(6x-1)2+(6x+1)2-(12x+2)(6x-1)
c)(ac+bd)2+(ad-bc)2
d)(ac-bd)(ac+bd)
giúp mình với ạ :)
cho x/5= y/8 =z/11
tính a, N= 6x-7y+4z/6x+7y-4z
b, M= 6x-7y+4z/6x+7y-4z
\(A=\left(\frac{6x+1}{x^2-6x}+\frac{6x-1}{x^2+6x}\right)\times\frac{x^2-36}{12x^2+12}\)
Rút gọn nha các cậu
\(A=\left(\frac{6x+1}{x^2-6x}+\frac{6x-1}{x^2+6x}\right)\times\frac{x^2-36}{12x^2+12}\)
\(A=\left[\frac{6x+1}{x\left(x-6\right)}+\frac{6x-1}{x\left(x+6\right)}\right]\times\frac{\left(x+6\right)\left(x-6\right)}{12\left(x^2+1\right)}\)
\(A=\frac{6x^2+36x+x+6+6x^2-36x-x+6}{x}\times\frac{1}{12\left(x^2+1\right)}\)
\(A=\frac{12\left(x^2+1\right)}{x}\times\frac{1}{12\left(x^2+1\right)}=\frac{1}{x}\)
a, 6x^3-6x=0
b, 2x(3x+7) -6x^2=28
c, 2(4x+4)-5(x-3)=0
a) \(6x^3-6x=0\Leftrightarrow6x\left(x^2-1\right)=0\Leftrightarrow6x\left(x-1\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}6x=0\\x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)b) \(2x\left(3x+7\right)-6x^2=28\Leftrightarrow6x^2+14x-6x^2=28\Leftrightarrow14x=28\Leftrightarrow x=2\)
c) \(2\left(4x+4\right)-5\left(x-3\right)=0\Leftrightarrow8x+8-5x+15=0\Leftrightarrow3x=-23\Leftrightarrow x=-\dfrac{23}{3}\)
a: Ta có: \(6x^3-6x=0\)
\(\Leftrightarrow6x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=1\end{matrix}\right.\)
b: Ta có: \(2x\left(3x+7\right)-6x^2=28\)
\(\Leftrightarrow6x^2+14x-6x^2=28\)
\(\Leftrightarrow14x=28\)
hay x=2
c: Ta có: \(2\left(4x+4\right)-5\left(x-3\right)=0\)
\(\Leftrightarrow8x+8-5x+15=0\)
\(\Leftrightarrow3x=-23\)
hay \(x=-\dfrac{23}{3}\)