Tìm x ϵ Z biết:
x+(x+1)+(x+2)+...+2001+2002=2002
1) So sánh :
A = 2000/2001 + 2001/2002 và B = 2000+2001/2001+2002
2) Tìm cặp x,y thuộc Z, biết :
5/x + y/4 = 1/8
2) \(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{y}{4}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{2y}{8}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1-2y}{8}\)
\(\Rightarrow x\left(1-2y\right)=40\)
Vì \(1-2y\) luôn là số lẻ nên \(1-2y\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow y=\left\{0;1;-2;3\right\}\)
\(\Rightarrow x\in\left\{40;-40;8;-8\right\}\)
Vậy các cặp số x,y thỏa mãn là \(\left(0;40\right);\left(1;-40\right);\left(-2;8\right);\left(3;-8\right)\)
Ta có :
\(B=\dfrac{2000+2001}{2001+2002}=\dfrac{2000}{2001+2002}+\dfrac{2001}{2001+2002}\)
Mặt khác :
\(\dfrac{2000}{2001}>\dfrac{2000}{2001+2002}\)
\(\dfrac{2001}{2002}>\dfrac{2001}{2001+2002}\)
\(\Leftrightarrow A=\dfrac{2000}{2001}+\dfrac{2001}{2002}>\dfrac{2000}{2001+2002}+\dfrac{2001}{2001+2002}=\dfrac{2000+2001}{2001+2002}=B\)
\(\Leftrightarrow A>B\)
Ta có: B =20002001+2002 +20012001+2002
Mặt khác: 20002001 >20002001+2002
20012002 >20012001+2002
Suy ra 20002001 +20012002 >20002001+2002 +20012001+2002
hay A> B
Vậy A > B.
tìm x, y thuộc Z sao cho |x-2001| + |2002-y| =1
Tìm giá trị nhỏ nhất của biểu thức:
\(B=\frac{\left(x-2001\right)\left(y-2002\right)}{\left(x-2001\right)^2+\left(y-2002\right)^2}+\frac{x-2001}{y-2002}\) \(+\frac{y-2002}{x-2001}\)
Tìm x ϵ Z biết:
x-1/2011 + x-2/2010 - x-3/2009 = x-4/2008
\(\dfrac{x-1}{2011}+\dfrac{x-2}{2010}-\dfrac{x-3}{2009}=\dfrac{x-4}{2008}\)
<=> \(\left(\dfrac{x-1}{2011}-1\right)+\left(\dfrac{x-2}{2010}-1\right)-\left(\dfrac{x-3}{2009}-1\right)=\left(\dfrac{x-4}{2008}-1\right)\)
<=> \(\dfrac{x-2012}{2011}+\dfrac{x-2012}{2010}-\dfrac{x-2012}{2009}-\dfrac{x-2012}{2008}=0\)
<=> \(\left(x-2012\right)\left(\dfrac{1}{2011}+\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{1}{2008}\right)=0\)
<=> x - 2012 = 0
<=> x = 2012
Tìm x:
x + 4/ 2000+ x +3 / 2001= x + 2 / 2002+ x + 1/2001
Giải phương trình sau:
\(\sqrt{\text{x - 2000}}\)+\(\sqrt{y-2001}\)+\(\sqrt{z-2002}\)=\(\dfrac{1}{2}\)(x+y+z)-3000
giải phương trình :
\(\sqrt{x-2000}+\sqrt{y-2001}+\sqrt{z-2002}=\dfrac{1}{2}\left(x+y+z\right)-3000\)
tìm x: 1/3+1/6+1/10+...+1/x(x+1):2=2001/2002
\(\sqrt{x-2000}+\sqrt{y-2001}+\sqrt{z-2002}\)=\(\dfrac{1}{2}\left(x+y+z\right)-3000\)
Giải phuong trình trên