Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O;R) (AB < AC). Gọi H là giao điểm của ba đường cao BE, CF và AD
a) Chứng minh: Tứ giác BFEC và AFHE nội tiếp.
b) Vẽ đường kính AK của đường tròn (O). Chứng minh: AK.AD AB.AC
c) Gọi N là giao điểm của OA và EF. Chứng minh: tứ giác NHDK nội tiếp.
d) Gọi Q, V lần lượt là hình chiếu của H lên EF và DF, QV cắt AD tại I, EI cắt DF tại S. Chứng minh: SI = IE
Giúp mình câu d với