a: góc HMC+góc HNC=180 độ
=>HMCN nội tiếp
b: góc CED=góc CAD
góc CDE=góc CAE
mà góc CAD=góc CAE(=góc CBD)
nên góc CED=góc CDE
=>CD=CE
a: góc HMC+góc HNC=180 độ
=>HMCN nội tiếp
b: góc CED=góc CAD
góc CDE=góc CAE
mà góc CAD=góc CAE(=góc CBD)
nên góc CED=góc CDE
=>CD=CE
Cho tam giác nhọn ABC nội tiếp đường tròn o . Các đường cao BD và CE của tam giác cắt nhau tại D. CM/ tứ giác ADCE và BCDE nội tieps đường tròn b.TIa BD và CE lần lượt cắt đường tròn tại M và N. Cm DE//MN c. ké đườn kính Ak. m tứ giác BKCM là hình thang cân
Cho tam giác nhọn ABC nội tiếp (O ,R) có AD, BE, CF là ba đường cao cắt nhau tại H. Vẽ đường kính AM, AD cắt đường tròn tại N.
a) Chứng minh tứ giác BHCM là hình bình hành.
b) Chứng minh góc BAN bằng góc MAC, và tứ giác BNMC là hình thang cân.
Cho tam giác cân ABC (AB = AC) nội tiếp đường tròn (O). Các đường phân giác của hai góc B và C cắt nhau ở E và cắt đường tròn lần lượt ở F và D. Chứng minh rằng tứ giác EDAF là một hình thoi ?
Bài 1: Cho ∆ABC cân tại A nội tiếp đường tròn (O). tia phân giác của góc B và góc C cắt đường tròn ở D và E
a) So sánh ∆ACE và ∆ABD
b) Gọi I là giao điểm của BD và CE. Tứ giác ADIE là hình gì? Tại sao?
Cho tam giác ABC nội tiếp (O) . Tia phân giác góc A cắt đường tròn tại M, tia phân giác góc ngoài tại đỉnh A cắt đường tròn tại N . CM:
a) tam giác MBC cân
b) CM: O, M, N thẳng hàng
Cho tam giác ABC nhọn, đường cao AH, BY, CK cắt nhau tại O. Tìm các tứ giác nội tiếp đường tròn xá định tâm của đường tròn đó
Cho tam giác abc đều nội tiếp trong đường tròn tâm O tiếp tuyến tuyến A và b của đường tròn cắt tại D A. Chứng mình tứ giác adbo nội tiếp đường tròn B.chứng mình acbd là hình thoi
Cho một tam giác ABC nhọn nội tiếp đường tròn tâm o . Đường cao AD , BE cắt nhau ở H . AD cắt đường tròn tại I . Chứng minh : DH = DI