Giai PTr :
\(\dfrac{x}{40}+\dfrac{x}{30}=\dfrac{3}{4}\)
giai ptr
8\(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\dfrac{10}{3}.\dfrac{2}{y}=1\)
=>\(\dfrac{8}{x}+\dfrac{8}{y}+\dfrac{20}{3}\cdot\dfrac{1}{y}=1\)
=>\(\dfrac{8}{x}+\dfrac{44}{3y}=1\)
=>\(\dfrac{24y+44x}{3xy}=1\)
=>44x+24y=3xy
=>44x+24y-3xy=0
=>44x-3y(x-8)=0
=>44x-352-3y(x-8)=352
=>(x-8)(44-3y)=352
=>\(\left(x-8;44-3y\right)\in\left\{\left(32;11\right)\left(44;8\right);\left(176;2\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(40;11\right);\left(52;12\right);\left(184;14\right)\right\}\)
Giai các ptr sau
a,\(\dfrac{1}{x-1}-\dfrac{3x^2}{x^3-1}=\dfrac{2x}{x^2+x+1}\)
b,\(\dfrac{8800}{x-2}-\dfrac{8800}{x}=20\)
c,\(\dfrac{1}{x}+\dfrac{1}{x+5}=\dfrac{1}{6}\)
d,\(\dfrac{x-1}{x}-\dfrac{1}{x+1}=\dfrac{2x-1}{x^2+x}\)
a: \(\Leftrightarrow x^2+x+1-3x^2=2x\left(x-1\right)\)
=>-2x^2+x+1-2x^2+2x=0
=>-4x^2+3x+1=0
=>4x^2-3x-1=0
=>4x^2-4x+x-1=0
=>(x-1)(4x+1)=0
=>x=1(loại) hoặc x=-1/4(nhận)
b: \(\Leftrightarrow\dfrac{440}{x-2}-\dfrac{440}{x}=1\)
=>x(x-2)=440x-440x+880
=>x^2-2x-880=0
=>\(x=1\pm\sqrt{881}\)
c: \(\Leftrightarrow\dfrac{x+5+x}{x\left(x+5\right)}=\dfrac{1}{6}\)
=>x^2+5x=6(2x+5)
=>x^2+5x-12x-30=0
=>x^2-7x-30=0
=>(x-10)(x+3)=0
=>x=10 hoặc x=-3
d: =>(x-1)(x+1)-x=2x-1
=>x^2-1-x=2x-1
=>x^2-x-2x=0
=>x(x-3)=0
=>x=0(loại) hoặc x=3(nhận)
Giai ptr
\(\dfrac{1}{2x}+\dfrac{1}{2\left(25-x\right)}=\dfrac{1}{12}\)
ĐKXĐ: \(\left\{{}\begin{matrix}2x\ne0\\2\left(25-x\right)\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne25\end{matrix}\right.\)
\(\dfrac{1}{2x}+\dfrac{1}{2\left(25-x\right)}=\dfrac{1}{12}\\ \Leftrightarrow\dfrac{25-x+x}{2x\left(25-x\right)}=\dfrac{1}{12}\\ \Leftrightarrow\dfrac{25}{-2x^2+50x}=\dfrac{1}{12}\\ \Leftrightarrow-2x^2+50x=300\\ \Leftrightarrow-2x^2+50x-300=0\\ \Leftrightarrow\left[{}\begin{matrix}x=15\left(tm\right)\\x=10\left(tm\right)\end{matrix}\right.\)
Vậy...
Giai PT : \(\dfrac{x}{40}+\dfrac{x}{30}=0,75\)
giải ptr
\(\dfrac{x}{3}-\dfrac{2x+1}{6}=\dfrac{x}{6}-x\)
\(\dfrac{x}{3}-\dfrac{2x+1}{6}=\dfrac{x}{6}-x\)
\(\Leftrightarrow\dfrac{2x}{6}-\dfrac{2x+1}{6}=\dfrac{x}{6}-\dfrac{6x}{6}\)
\(\Leftrightarrow2x-2x+1=x-6x\)
\(\Leftrightarrow1=-5x\)
\(\Leftrightarrow x=\dfrac{-1}{5}\)
giải ptr
\(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{x^3+3}{x^2-1}\)
ĐKXĐ: \(x\ne\pm1\)
\(\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}=\dfrac{x^3+3}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow\left(x+1\right)^2-\left(x-1\right)^2=x^3+3\)
\(\Leftrightarrow4x=x^3+3\)
\(\Leftrightarrow x^3-4x+3=0\)
\(\Leftrightarrow x^3-x^2+x^2-x-3x+3=0\)
\(\Leftrightarrow x^2\left(x-1\right)+x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(loại\right)\\x^2+x-3=0\end{matrix}\right.\)
\(\Rightarrow x=\dfrac{-1\pm\sqrt{13}}{2}\)
Giải phương trình
\(\dfrac{x}{30}\)=\(\dfrac{x}{40}\)+\(\dfrac{3}{4}\)
=>x/30-x/40=3/4
=>x/120=3/4
=>x=90
\(\dfrac{x}{30}=\dfrac{x}{40}+\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{4x}{120}=\dfrac{3x}{120}+\dfrac{90}{120}\)
\(\Leftrightarrow4x=3x+90\)
\(\Leftrightarrow4x-3x-90=0\)
\(\Leftrightarrow x-90=0\)
\(\Leftrightarrow x=90\)
\(\text{Vậy phương trình có tập nghiệm là }S=\left\{90\right\}\)
giải các ptr sau
a)\(\dfrac{2-x}{2008}-1=\dfrac{1-x}{2009}-\dfrac{x}{2010}\)
b)\(\dfrac{x}{3}-\dfrac{2x+1}{2}=\dfrac{x}{6}-x\)
Cho ptr :\(x^2-2\left(m-1\right)x+m+1=0\)
Tìm m để ptr trên có 2 nghiệm x1,x2 thỏa mãn \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=4\)
Δ=(2m-2)^2-4(m+1)
=4m^2-8m+4-4m-4
=4m^2-12m
Để phương trình co hai nghiệm thì 4m^2-12m>0
=>m>3 hoặc m<0
x1/x2+x2/x1=4
=>x1^2+x2^2=4x1x2
=>(x1+x2)^2-2x1x2=4x1x2
=>(2m-2)^2-6(m+1)=0
=>4m^2-8m+4-6m-6=0
=>4m^2-14m-2=0
=>\(m=\dfrac{7\pm\sqrt{57}}{2}\)