Δ=(2m-2)^2-4(m+1)
=4m^2-8m+4-4m-4
=4m^2-12m
Để phương trình co hai nghiệm thì 4m^2-12m>0
=>m>3 hoặc m<0
x1/x2+x2/x1=4
=>x1^2+x2^2=4x1x2
=>(x1+x2)^2-2x1x2=4x1x2
=>(2m-2)^2-6(m+1)=0
=>4m^2-8m+4-6m-6=0
=>4m^2-14m-2=0
=>\(m=\dfrac{7\pm\sqrt{57}}{2}\)
Δ=(2m-2)^2-4(m+1)
=4m^2-8m+4-4m-4
=4m^2-12m
Để phương trình co hai nghiệm thì 4m^2-12m>0
=>m>3 hoặc m<0
x1/x2+x2/x1=4
=>x1^2+x2^2=4x1x2
=>(x1+x2)^2-2x1x2=4x1x2
=>(2m-2)^2-6(m+1)=0
=>4m^2-8m+4-6m-6=0
=>4m^2-14m-2=0
=>\(m=\dfrac{7\pm\sqrt{57}}{2}\)
Cho ptr x2-2(m+1)x-m-5=0 Tìm m để ptr có 2 nghiệm x1,x2 thỏa mãn \(\left(x_1-x_2\right)^2-x_1\left(x_1+3\right)-x_2\left(x_2+3\right)=-4\)
Cho ptr x2-2(m+1)x-m-5=0 Tìm m để ptr có 2 nghiệm x1,x2 thỏa mãn
Cho ptr \(x^2-2\left(m-1\right)x+m^2-4=0\) Tìm gtri của m để ptr đã cho có 2 nghiệp pb x1,x2 thỏa mãn \(x_1\left(x_1-3\right)+x_2\left(x_2-3\right)=6\)
Cho ptr : \(x^2-2\left(m-1\right)x+m-3=0\) CMR ptr đã cho luôn có 2 nghiệm pb x1,x2 thỏa mãn : \(|x_1-x_2|=4\)
Xác định các giá trị của m để ptr \(x^2-x+1-m=0\) có 2 nghiệp thực x1,x2 thỏa mãn đẳng thức \(5\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)-x_1x_2+4=0\)
b Tìm m để phương trình \(\left(m-1\right)x^2+2\left(m-1\right)x+m+3=0\) có hai nghiệm x1,x2 thỏa mãn \(x_1^2+x_1.x_2+x_2^2=1\)
c Tìm m để phương trình \(\left(m-1\right)x^2-2mx+m+2=0\) có hai nghiệm x1,x2 phân biệt thỏa mãn \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}+6=0\)
d Tìm m để phương trình \(3x^2+4\left(m-1\right)x+m^2-4m+1=0\) có hai nghiệm phân biệt x1,x2 thỏa mãn \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{1}{2}\) (x1+x2)
Cho phương trình: x2 - (m + 2).x + 2m = 0. Tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn: \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1.x_2}{4}\)
Tìm
m
để phương trình \(x^2-2\left(m+1\right)x+2m+1=0\) có hai nghiệm x1,x2 thỏa mãn \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=2\)
Tìm m để phương trình: \(3x^2+4\left(m-1\right)x+m^2-4m+1=0\) có hai nghiệm phân biệt \(x_1,x_2\) thỏa mãn: \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{1}{2}\left(x_1+x_2\right)\)