Chứng minh rằng \({21n+4 \over 14n+3}\)là phân số tối giản
Chứng minh rằng phân số \(\dfrac{21n+4}{14n+3}\) là phân số tối giản với mọi số tự nhiên
Gọi \(\text{ƯCLN(21n+4,14n+3)}\) là \(\text{d}\)
\(\Rightarrow\) \(\text{21n+4 ⋮ d}\)
\(\text{14n+3 ⋮ d}\)
\(\Rightarrow\) \(\text{[3(14n+3)-2(21n+4) ⋮ d}\)
\(\Rightarrow\) \(\text{[42n+9-42n-8] ⋮ d}\)
\(\Rightarrow\) \(\text{1 ⋮ d}\)
\(\Rightarrow\) \(\text{d =1( đpcm )}\)
chứng minh rằng với mọi số tự nhiên n phân số 21n+4/14n+3 là phân số tối giản
gọi d là ƯCLN của 21n+4 và 14n+3
=> 21n+4 chia hết cho d =>2.(21n+4) chia hết cho d
14n+3 chia hết cho d =>3.(14n+3) chia hết cho d
=> (42n+9)-(42n+8) chia hết cho d
=> 42n+9-42n-8 chia hết cho d
=>1 chia hết cho d
=> d thuộc Ư(1)={1}
=> ƯCLN(21n+4;14n+3)=1 => phân số 21n+4/14n+3 là phân số tối giản (ĐPCM)
Chứng minh 14n+3 / 21n+4 là phân số tối giản
-Gọi \(ƯCLN\left(14n+3;21n+4\right)=a\).
-Có: \(\left(14n+3\right)⋮a\)
\(\Rightarrow\left[3.\left(14n+3\right)\right]⋮a\)
\(\Rightarrow\left(42n+9\right)⋮a\) (1)
-Có: \(\left(21n+4\right)⋮a\)
\(\Rightarrow\left[2\left(21n+4\right)\right]⋮a\)
\(\Rightarrow\left(48n+8\right)⋮a\) (2)
-Từ (1) và (2) suy ra:
\(\left[\left(48n+9\right)-\left(48n+8\right)\right]⋮a\)
\(\Rightarrow1⋮a\)
\(\Rightarrow a\in\left\{1;-1\right\}\)
-Vậy \(\dfrac{14n+3}{21n+4}\) là phân số tối giản.
Chứng minh phân số (21n+4)/(14n+3) là phân số tối giản
Đặt \(d=\left(21n+4,14n+3\right)\)
Suy ra
\(\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\end{cases}}\Rightarrow3\left(14n+3\right)-2\left(21n+4\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1
Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d
=> (14n+3) -(21n+4) ⋮⋮d
=> 3(14n+3) -2(21n+4) ⋮⋮d
=> 42n+9 - 42n -8 ⋮⋮d
=> 1⋮⋮d
=> 21n+4/14n+3 là phân số tối giản
chứng minh rằng với mọi số tự nhiên n thì (21n+4)/(14n+3) là phân số tối giản
gọi d là UCLN(21n+4;14n+3)
ta có:
[3(14n+3)]-[2(21n+4)]chia hết d
=>[42n+9]-[42n+8] chia hết d
=>1 chia hết d
=>d=1
=>phân số trên tối giản
gọi ƯCLN (21n+4;14n+3)=d
=> 21n+4 chia hết cho d
14n+3 chia hết cho d
=> 42n+8 chia hết cho d
42n+9 chia hết cho d
=> 1chia hết cho d
=> d=1
=>\(\frac{21n+4}{14n+3}\)là phân số tối giản.(đpcm)
(hình như đây là toán lớp 6 thì phải:D)
Chứng minh rằng phân số sau tối giản 21n+ 4/ 14n+ 3 (n thuộc N )
giải
gọi d ưcln {21n+4 và 14 n+3} =>
(21n+4) chia hết cho d=> [2.(21n+4)] chia hết cho d =>(42n+8)chia hết cho d(1)
(14n+3)chia hết cho d=> [3.(14n+3)] chia hết cho d => (42n+9)chia hết cho d(2)
từ 1 và 2 => [(42n+9)-(42n+8)] chia hết cho d => (42n+9-42n-8)chia hết cho d => [(42n_42n) +(9-8)] chia hết cho d => 1 chia hết cho d => d =1 mà d lại là ưcln {21n+4 và 14n+3)(n thuộc N)
vậy biểu thức đã được chứng minh
Chứng minh 14n+3/21n + 4 là phân số tối giản.(n là số tự nhiên)
Gọi ƯCLN 21n + 4 và 14n + 3 là d ( d ∈ N và d ≥ 1 )
Khi đó: 2 ( 21n + 4 ) ⋮ d và 3 ( 14n + 3 ) ⋮ d
hay 42n + 8 ⋮ d và 42n + 9 ⋮ d
Suy ra 42n + 9 - 42n + 8 ⋮ d ⇒ 1 ⋮ d
Vậy d = 1
Như vậy phân số \(\dfrac{21n+4}{14n+3}\) là phân số tối giản với n là số tự nhiên
Gọi d=UCLN(14n+3;21n+4)
\(\Leftrightarrow\left\{{}\begin{matrix}42n+9⋮d\\42n+8⋮d\end{matrix}\right.\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy: 14n+3/21n+4 là phân số tối giản
Chứng minh rằng: 21n+1 / 14n+3 là phân số tối giản với mọi số tự nhiên n.
dạ em chào anh ghi cái gì mà tui ko hỉu gì hết
Chứng minh rằng phân số sau là phân số tối giản A= 14n+17/21n+25
Gọi d là ucln(14n+17 và21n+25 )
hay 14n+17 và21n+25chia hết d
3(14n+17)và 2(21n+25)
hay42n+51 chia hết d(1)
42n+50 chia hết d(2)
từ 1 và 2 =>42n+51- 42n+50 chia hết d
=>1 chia hết d
=>d=1
đúng cái
gọi ƯCLN ( 14n +17: 21n + 25) là d
ta có : 14n + 17 chia hết d = 7+ ( 14n + 17) = 21n + 24 chia hết cho d
21n +25 chia hết d = 0 + (21n +25) = 21n +25 chia hết cho d
=> 21n + 25 - 21n -24 chia hết cho d
=> 1 chia hết cho d
=> d=1
vậy ƯCLN (14n +17 ; 21n + 25) =1
=> PS TRÊN LÀ PHÂN SỐ TỐI GIẢN
gọi a là u7cln(14n+17,21n+25)
để 14n+17/21n+25 là sn thì 14n+17 phải chia hết cho 21n+25
tcó: 14n+17:a và 21n+25:a
suy ra 3(14n+17)chia hết a và 2(21n+25)chia hết a
42n+51chia hết a và 42n+50chia hết a
suy ra (42n+51)-(42n+50)chia hết a
suy ra 1 chia hết cho
suy ra 14n+17 và 21n+25 là 2 snt cùng nhau suy ra 14n+17/21n+25 là phân số tồi giản