Gọi ƯCLN 21n + 4 và 14n + 3 là d ( d ∈ N và d ≥ 1 )
Khi đó: 2 ( 21n + 4 ) ⋮ d và 3 ( 14n + 3 ) ⋮ d
hay 42n + 8 ⋮ d và 42n + 9 ⋮ d
Suy ra 42n + 9 - 42n + 8 ⋮ d ⇒ 1 ⋮ d
Vậy d = 1
Như vậy phân số \(\dfrac{21n+4}{14n+3}\) là phân số tối giản với n là số tự nhiên
Gọi d=UCLN(14n+3;21n+4)
\(\Leftrightarrow\left\{{}\begin{matrix}42n+9⋮d\\42n+8⋮d\end{matrix}\right.\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy: 14n+3/21n+4 là phân số tối giản