1+2+23+25+...+299+2101
Cho biểu thức A = 1 + 21 + 22 + 23 +...+ 2100 + 2101 .Chứng minh A chia hết cho 7
câu 1:chứng minh.
a)20+2+22+23+...+249 chia hết cho 3
b)20+2+23+...+2101 chia hết cho 7
c)Tính: A=20+2+22+...+2100
Giúp mình giải bài tập,mk thả tim cho.
hạn là 1h30p ngày 15/12/2022. làm ơn đó
a: \(=\left(1+2\right)+2^2\left(1+2\right)+...+2^{48}\left(1+2\right)\)
\(=3\left(1+2^2+...+2^{48}\right)⋮3\)
b: \(2^0+2^1+2^2+...+2^{101}\)
\(=\left(1+2+2^2\right)+...+2^{99}\left(1+2+2^2\right)\)
\(=7\left(1+...+2^{99}\right)⋮7\)
c: 2A=2+2^2+...+2^101
=>A=2^101-1
B= 22 + 23 + 24 + 25 + ..... + 299 chia hết cho 3
\(2^2+2^3+2^4+2^5+...+2^{99}=2^2\left(1+2\right)+2^4\left(1+2\right)+...+2^{98}\left(1+2\right)=3.2^2+3.2^4+...+3.2^{98}=3\left(2^2+2^4+...+2^{98}\right)⋮3\)
\(B=2^2+2^3+...+2^{99}\)
\(B=\left(2^2+2^3\right)+...+\left(2^4+2^5\right)+...+\left(2^{98}+2^{99}\right)\)
\(B=3.2^2+3.2^4+...+3.2^{98}\)
\(B=3.\left(2^2+2^4+...+2^{98}\right)\)
\(\Rightarrow B⋮3\)
tìm chữ số tận cùng của các số sau
a. 7430
b. 4931
c.8732
d. 5833
e. 2335
F.2101
g.319
h.2+22+23+...+220
chị làm a,b,c trc đc ko em, ấn nhiều mỏi quá
a)Tính nhanh: A= 1+5+9+13+...+101
b)Cho B = 1+2+22+24+25+26+27+28+29+210+211.
Chứng tỏ B chia hết cho 7
c)Rút gọn biểu thức C = 1+2+22+23+24+...+299.
1/
Tổng A là tổng các số hạng cách đều nhau 4 đơn vị.
Số số hạng: $(101-1):4+1=26$
$A=(101+1)\times 26:2=1326$
2/
$B=(1+2+2^2)+(2^3+2^4+2^5)+(2^6+2^7+2^8)+(2^9+2^{10}+2^{11})$
$=(1+2+2^2)+2^3(1+2+2^2)+2^6(1+2+2^2)+2^9(1+2+2^2)$
$=(1+2+2^2)(1+2^3+2^6+2^9)$
$=7(1+2^3+2^6+2^9)\vdots 7$
3/
$C=1+2+2^2+2^3+...+2^{99}$
$2C=2+2^2+2^3+2^4+...+2^{100}$
$\Rightarrow 2C-C=2^{100}-1$
$\Rightarrow C=2^{100}-1$
Cho A= 20+21+22+23+24+25 +26 .........+ 299 CMR: A chia hết cho 31
`A=2^{0}+2^{1}+2^{2}+....+2^{99}`
`=(1+2+2^{2}+2^{3}+2^{4})+(2^{5}+2^{6}+2^{7}+2^{8}+2^{9})+......+(2^{95}+2^{96}+2^{97}+2^{97}+2^{99})`
`=(1+2+2^{2}+2^{3}+2^{4})+2^{5}(1+2+2^{2}+2^{3}+2^{4})+.....+2^{95}(1+2+2^{2}+2^{3}+2^{4})`
`=31+2^{5}.31+....+2^{95}.31`
`=31(1+2^{5}+....+2^{95})\vdots 31`
\(A=2^0+2^1+2^2+2^3+2^4+2^5+2^6+...+2^{99}\)
\(=\left(2^0+2^1+2^2+2^3+2^4\right)+2^5\left(2^0+2^1+2^2+2^3+2^4\right)+...+2^{95}\left(2^0+2^1+2^2+2^3+2^4\right)=31+31.2^5+...+31.2^{95}=31\left(1+2^5+...+2^{95}\right)⋮31\)
Cho A = 20 + 21 + 22 + 23 + 24 + 25 … + 299 . Chứng minh A chia hết cho 31
A = 20 + 21 + 22 + 23 + 24 + 25 … + 299
A=( 20 + 21 + 22 + 23 + 24) +( 25 … + 299)
A= 20.(20 + 21 + 22 + 23 + 24)+25.( 25 … + 299)
A= 1. 31+ 25.31… + 295.31
A= 31. (1+25...+295)
KL: ......
\(A=2^0+2^1+2^2+2^3+2^4+...+2^{99}=\left(2^0+2^1+2^2+2^3+2^4\right)+2^5\left(2^0+2^1+2^2+2^3+2^4\right)+...+2^{95}\left(2^0+2^1+2^2+2^3+2^4\right)=31+31.2^5+...+31.2^{95}=31\left(1+2^5+...+2^{95}\right)⋮31\)
A = 20 + 21 + 22 + 23 + 24 + 25 … + 299
A=( 20 + 21 + 22 + 23 + 24) +( 25 … + 299)
A= 20.(20 + 21 + 22 + 23 + 24)+25.( 25 … + 299)
A= 1. 31+ 25.31… + 295.31
A= 31. (1+25...+295)
KL: ......
THU GỌN BIỂU THỨC
21+23+25+.....+279+299
A=2100-299+298-297+...-23+22-2+1
HELP ME
\(A=2^{100}-2^{99}+2^{98}-2^{97}+....-2^3+2^2-2+1\\ A=\left(2^{100}+2^{98}+...+2\right)-\left(2^{99}+2^{97}+...+1\right)\)
Gọi \(\left(2^{100}+2^{98}+...+2\right)\)là B
\(B=\left(2^{100}+2^{98}+...+2\right)\\ 2B=2^{102}+2^{100}+.....+2^2\\ 2B-B=\left(2^{102}+2^{100}+.....+2^2\right)-\left(2^{100}+2^{98}+...+2\right)\\ B=2^{102}-2\)
Gọi \(\left(2^{99}+2^{97}+...+1\right)\) là C
\(C=\left(2^{99}+2^{97}+...+1\right)\\ 2C=2^{101}+2^{99}+....+2\\ 2C-C=\left(2^{101}+2^{99}+9^{97}+...+2\right)-\left(2^{99}+9^{97}+...+1\right)\\ C=2^{101}-1\)
\(A=B+C\\ =>A=2^{102}-2+2^{101}-1\\ A=2^{101}\left(2+1\right)-3\\ A=2^{101}\cdot3-3\\ A=3\cdot\left(2^{101}-1\right)\)
\(\dfrac{1}{2}A=2^{99}-2^{98}+...-1+\dfrac{1}{2}\\ \Rightarrow A-\dfrac{1}{2}A=2^{100}-\dfrac{1}{2}\\ \Rightarrow A=2^{101}-1\)