Chứng minh với mọi n nguyên dương thì: -0,7(4343-1717) là một số nguyên
Với mỗi số nguyên dương n, gọi u n = 9 n - 1 . Chứng minh rằng với mọi số nguyên dương n thì un luôn chia hết cho 8.
* Ta có u 1 = 9 1 − 1 = 8 chia hết cho 8 (đúng với n = 1).
* Giả sử u k = 9 k − 1 chia hết cho 8.
Ta cần chứng minh u k + 1 = 9 k + 1 − 1 chia hết cho 8.
Thật vậy, ta có u k + 1 = 9 k + 1 − 1 = 9.9 k − 1 = 9 9 k − 1 + 8 = 9 u k + 8 .
Vì 9 u k và 8 đều chia hết cho 8, nên u k + 1 cũng chia hết cho 8.
Vậy với mọi số nguyên dương n thì u n chia hết cho 8.
chứng minh rằng với mọi số nguyên n thì n^4+2n^3+2n^2+2n+1 không là số nguyên dương
giúp mình với nh ^^
\(n^4+2n^3+2n^2+2n+1=\left(n^4+2n^3+n^2\right)+\left(n^2+2n+1\right)=\left(n^2+1\right)\left(n+1\right)^2\)
Em xin mạn phép sửa đề: Chứng minh với mọi số nguyên n thì A (là cái biểu thức bên trên) luôn không âm.
Ta có: \(A=n^2\left(n+1\right)^2+\left(n+1\right)^2=\left(n+1\right)^2\left(n^2+1\right)\ge0\)
Suy ra đpcm.
chứng minh với mọi số nguyên dương n thì 3^n+1+4^n+2021^n không phải là số chính phương
chứng minh với mọi số nguyên dương n thì 3^n+1+4^n+2021^n không phải là số chính phương
chứng minh với mọi n là số nguyên dương thì 2^n - 1 luôn chia hết cho 7
Chứng minh rằng với mọi số nguyên dương n thì số sau đây không phải số nguyên: \(A=\sqrt{3n+2}\)
Với mọi n nguyên thì \(B=3n+2\) luôn chia 3 dư 2
Mà mọi số chính phương khi chia 3 đều dư 0 hoặc 1
\(\Rightarrow\) B không phải là SCP
\(\Rightarrow\) A không phải số nguyên
Toán Tuổi Thơ:
Chứng minh rằng số \(\sqrt{n}+\sqrt{n+4}\) không phải là một số nguyên dương với mọi số nguyên dương n.
Đặt A = \(\sqrt{n}+\sqrt{n+4}\)
=> \(A^2=n+n+4+2\sqrt{n\left(n+4\right)}\) = \(2n+4+2\sqrt{n\left(n+4\right)}\)
Vì n nguyên dương nên 2n + 4 nguyên dương
Mặt khác n(n+4) >0 , không là số chính phương nên \(\sqrt{n\left(n+4\right)}\) , không phải số nguyên dương
=> \(2\left(\sqrt{n\left(n+4\right)}\right)\) không phải số nguyên dương
=> A2 không phải số nguyên dương => A không phải số nguyên dương ( đpcm)
============================
Các bạn giải nhanh nha!
Ngày mai lúc 8h 30 (hoặc sớm hơn) mình sẽ chấm và đưa ra đáp án.
giả sử \(\sqrt{n}\)+\(\sqrt{n+4}\) là số nguyên dương
khi đó (\(\sqrt{n}\)+\(\sqrt{n+4}\))2 cũng là số nguyên dương
->n+2.\(\sqrt{n\left(n+4\right)}\)+n+4 là số nguyên dương
->2n+4+2\(\sqrt{n\left(n+4\right)}\) là số nguyên dương
tổng trên là số nguyên dương <=>\(\sqrt{n\left(n+4\right)}\)là số nguyên<=>n(n+4) là bình phương của 1 số
Ta thấy với mọi n nguyên dương thì nếu
n=1 thì không thỏa mãn
n=2 thì không thỏa mãn
do đó với mọi n>2 thì tất cả các số là bình phương 1 số đều có dạng (n+2)2 =n2+4n+4
mà để là bình phương 1 số thì n(n+4) phải thêm 4 đơn vị với mọi số n (n>2)
do đó n(n+4) không thể là 1 số chính phương
do đó điều giả sử là không đúng
vậy KL
Chứng minh rằng: Với mọi số nguyên dương n thì : chia hết cho 10
Bạn ghi lại biểu thức đi bạn
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=\left(3^n\cdot9+3^n\right)-\left(4\cdot2^n+2^n\right)\)
\(=10\cdot3^n-5\cdot2^n\)
\(=10\cdot3^n-10\cdot2^{n-1}=10\left(3^n-2^{n-1}\right)⋮10\)
Với mỗi số nguyên dương \(n\), đặt \(s_{n} = (2 - \sqrt{3})^n + (2 + \sqrt{3})^n\)
a) Chứng minh rằng: \(s_{n+2} = 4s_{n+1} - s_{n}\)
b) Chứng minh rằng sn là số nguyên với mọi số nguyên dương n và tìm số dư của s2018 khi chia cho 3.
c) Chứng minh rằng \([(2 + \sqrt{3})^n] = s_{n} - 1\) với mọi số nguyên dương \(n\), trong đó kí hiệu [x] là phần nguyên của số thực \(x\).