giup tui voi cam on nhaaa
giup tui nha mn tui cam on nhieu
Bài 5:
a) Ta có: AB⊥AD,DC⊥AD
=> AB//DC
b) Ta có: AB//DC
\(\Rightarrow\widehat{ABC}+\widehat{C}=180^0\)(trong cùng phía)
\(\Rightarrow\widehat{ABC}=180^0-45^0=135^0\)
Bài 6:
a) Ta có: AB//CD
\(\Rightarrow\widehat{B}+\widehat{C}=180^0\)(trong cùng phía)
\(\Rightarrow\widehat{B}=180^0-120^0=60^0\)
Ta có: AB//CD,AB⊥AD
=> AD⊥DC
Bài 8:
a) \(\widehat{ACD}+\widehat{C}=180^0\)(kề bù)
\(\Rightarrow\widehat{ACD}=180^0-55^0=125^0\)
b) Ta có: \(\widehat{C}+\widehat{D}=55^0+125^0=180^0\)
Mà 2 góc này trong cùng phía
=> AC//BD
c) Ta có: AC//BD,AC⊥AB
=> AB⊥BD
giup voi cam on moi nguoi
giup mik voi mik cam on!
a: Xét ΔBAE và ΔBDE có
BA=BD
\(\widehat{ABE}=\widehat{DBE}\)
BE chung
Do đó: ΔBAE=ΔBDE
b: Ta có: ΔBAE=ΔBDE
nên \(\widehat{BAE}=\widehat{BDE}=90^0\)
hay ED\(\perp\)BC
c: Xét ΔAKE vuông tại A và ΔDCE vuông tại D có
EA=ED
\(\widehat{AEK}=\widehat{DEC}\)
Do đó: ΔAKE=ΔDCE
Suy ra: EK=EC
hay ΔEKC cân tại E
giup em voi, em cam on
a)\(R_1//R_2\Rightarrow R_{12}=\dfrac{R_1\cdot R_2}{R_1+R_2}=\dfrac{60\cdot40}{60+40}=24\Omega\)
\(I=\dfrac{U}{R_{tđ}}=\dfrac{12}{24}=0,5A\)
b)\(U_1=U_2=U=12V\)
\(P_1=\dfrac{U_1^2}{R_1}=\dfrac{12^2}{60}=2,4W\)
\(P_2=\dfrac{U_2^2}{R_2}=\dfrac{12^2}{40}=3,6W\)
c)CTM mới: \(R_3nt(R_1//R_2)\)
\(I'=\dfrac{I}{2}=\dfrac{0,5}{2}=0,25A\)
\(R_{tđ}=\dfrac{U}{I'}=\dfrac{12}{0,25}=48\Omega\)
\(R_3=R_{tđ}-R_{12}=48-24=24\Omega\)
giup em voi em cam on nhieuuu
Từ đề bài ta suy ra tất cả các mặt bên của hộp đều là hình thoi (được ghép từ 2 tam giác đều)
\(\Rightarrow A'D=A'B=A'A=a\Rightarrow\) hình chiếu vuông góc của A' lên (ABCD) trùng trọng tâm E của tam giác ABD
\(\widehat{DBE}=\dfrac{1}{2}.60^0=30^0\Rightarrow\widehat{CBE}=\widehat{CBD}+\widehat{DBE}=60^0+30^0=90^0\)
\(\Rightarrow BC\perp BE\)
Mà \(A'E\perp\left(ABCD\right)\Rightarrow A'E\perp BC\)
\(\Rightarrow BC\perp\left(A'BE\right)\Rightarrow BC\perp A'B\)
\(\Rightarrow B'C'\perp A'B\)
\(AE=\dfrac{2}{3}.\dfrac{a\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{3}\Rightarrow A'E=\sqrt{A'A^2-AE^2}=\dfrac{a\sqrt{6}}{3}\)
Qua C' dựng đường thẳng song song A'E cắt AC tại F \(\Rightarrow C'F=A'E=\dfrac{a\sqrt{6}}{3}\)
\(CF=AE=\dfrac{a\sqrt{3}}{3}\) ; \(AC=2.\dfrac{a\sqrt{3}}{2}=a\sqrt{3}\Rightarrow AF=AC+CF=\dfrac{4a\sqrt{3}}{3}\)
\(\Rightarrow AC'=\sqrt{AF^2+C'F^2}=a\sqrt{6}\)
\(CP=\dfrac{1}{3}CC'\) ; \(CN=\dfrac{1}{3}BC\)
Nối PN kéo dài cắt BB' tại J
Talet: \(\dfrac{CP}{BJ}=\dfrac{CN}{NB}=\dfrac{1}{2}\Rightarrow BJ=2CP=\dfrac{2a}{3}\Rightarrow\dfrac{BJ}{B'J}=\dfrac{\dfrac{2a}{3}}{a+\dfrac{2a}{3}}=\dfrac{2}{5}\)
Nối JM cắt A'B' kéo dài tại K
Talet: \(\dfrac{BM}{B'K}=\dfrac{BJ}{B'J}=\dfrac{2}{5}\Rightarrow B'K=\dfrac{5BM}{2}=\dfrac{5a}{4}\)
Nối MN cắt BD tại H và cắt CD tại G
Talet: \(\dfrac{CG}{BM}=\dfrac{CN}{BN}=\dfrac{1}{2}\Rightarrow CG=\dfrac{1}{2}BM=\dfrac{a}{4}\Rightarrow DG=a+\dfrac{a}{4}=\dfrac{5a}{4}\)
Talet: \(\dfrac{BH}{DH}=\dfrac{BM}{DG}=\dfrac{a\div2}{5a\div4}=\dfrac{2}{5}\) (1)
Nối GP cắt C'D' tại Q
Talet: \(\dfrac{CG}{C'Q}=\dfrac{CP}{C'P}=\dfrac{1}{2}\Rightarrow C'Q=2CG=\dfrac{a}{2}\)
Nối QK cắt B'D' tại L
Talet: \(\dfrac{D'L}{B'L}=\dfrac{D'Q}{B'K}=\dfrac{a\div2}{5a\div4}=\dfrac{2}{5}\) (2)
(1);(2) \(\Rightarrow D'L=BH\) (do \(BD=B'D'\))
Nối HL cắt BD' tại I
Talet: \(\dfrac{D'I}{IB}=\dfrac{D'L}{BH}=1\)
Gọi F là giao điểm QK và A'D', O là giao điểm JK và A'A
Ta đồng thời suy ra luôn NPQFOM là thiết diện của (MNP) và chóp
giup em voi em cam on a
giup minh voi a mik xin cam on
8 It took me 3 hours to do these exercise
9 Many years ago, my village used to be very poor
10 Mary last met him 5 years ago
11 Would you mind giving me a hand
12 There used to be many old buildings in this city
13 When were they married
14 I started learning Japanese 2 years ago
15 Jack used to be a good student
16 My sister used to buy all her clothes in Henry's
17 Braille is reading system for the blind
giup em voi em cam on nhieu aaa
Từ A đến C, có 4 đoạn đi lên (nằm song song nhau) và 5 đoạn đi ngang nằm song song
Ta kí hiệu đi lên là L và đi ngang là N, như vậy, số cách đi từ A đến C là số cách sắp xếp 9 kí tự bao gồm 4L và 5N
\(\Rightarrow\) Có \(\dfrac{9!}{5!.4!}\) cách
Tương tự, từ C đến B có 2L và 5N, có \(\dfrac{7!}{2!.5!}\) cách
Tổng cộng: \(\dfrac{9!}{5!.4!}.\dfrac{7!}{2!.5!}\) cách đi từ A đến B
giup em bai nay voi a em cam on nhieuuu
Cách làm ngắn gọn: \(5=\dfrac{5\left(x-1\right)}{x-1}=\dfrac{5x-5}{x-1}=\dfrac{5x+5-10}{x-1}\)
Do đó chọn \(f\left(x\right)=5x+5\) thế vào nhanh chóng tính ra kết quả giới hạn
Còn cách khác phức tạp hơn (có thể sử dụng cho tự luận):
Do \(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-10}{x-1}=5\) hữu hạn nên \(f\left(x\right)-10=0\) có nghiệm \(x=1\)
\(\Rightarrow f\left(1\right)-10=0\Rightarrow f\left(1\right)=10\)
Do đó:
\(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-10}{\left(\sqrt{x}-1\right)\left(\sqrt{4f\left(x\right)+9}+3\right)}=\lim\limits_{x\rightarrow1}\dfrac{\left[f\left(x\right)-10\right]\left(\sqrt{x}+1\right)}{\left(x-1\right)\left(\sqrt{4f\left(x\right)+9}+3\right)}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-10}{x-1}.\dfrac{\sqrt{x}+1}{\sqrt{4f\left(x\right)+9}+3}=5.\dfrac{1+1}{\sqrt{4f\left(1\right)+9}+3}=5.\dfrac{2}{\sqrt{4.10+9}+3}=...\)