3/1.4 + 3/4.7 + ... + 3/94.97 + 3/97.100
Giúp mìh giải bài này nha . Thanks
3/1.4 + 3/4.7 + 3/7.10 + ... + 3/94.97
`3/1.4+3/4.7+3/7.10+...+3/94.97`
`=1/1-1/4+1/4-1/7+1/7-1/10+...+1/94-1/97`
`=1-1/97`
`=96/97`
\(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{94.97}\\ =1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{94}-\dfrac{1}{97}\\ =1-\dfrac{1}{97}=\dfrac{96}{97}\)
1.
a) 1/1.4+1/4.7+1/7.10+...+1/100.103
b)-1/3+-1/15+-1/35+-1/63+...+-1/9999
2.
3/1.4+3/4.7+3/7.10+...+3/94.97+3/97.100
`#3107.101107`
1.
a)
`1/(1*4) + 1/(4*7) + 1/(7*10) + ... + 1/(100*103)`
`= 1/3 * (3/(1*4) + 3/(4*7) + 3/(7*10) + ... + 3/(100*103) )`
`= 1/3 * (1 - 1/4 + 1/4 - 1/7 + ... + 1/100 - 1/103)`
`= 1/3* (1 - 1/103)`
`= 1/3*102/103`
`= 34/103`
b)
`-1/3 + (-1/15) + (-1/35) + (-1/63) + ... + (-1/9999)`
`= - 1/3 - 1/15 - 1/35 - 1/63 - ... - 1/9999`
`= - (1/3 + 1/15 + 1/35 + ... + 1/9999)`
`= - (1/(1*3) + 1/(3*5) + 1/(5*7) + ... + 1/99*101)`
`= - 1/2 * (2/(1*3) + 2/(3*5) + 2/(5*7) + ... + 2/99*101)`
`= - 1/2* (1 - 1/3 + 1/3 - 1/5 + ... + 1/99 - 1/101)`
`= -1/2 * (1 - 1/101)`
`= -1/2*100/101`
`= -50/101`
2.
`3/(1*4) + 3/(4*7) + ... + 3/(94*97) + 3/(97*100)`
`= 1 - 1/4 + 1/4 - 1/7 + ... + 1/94 - 1/97 + 1/97 - 1/100`
`= 1-1/100`
`= 99/100`
Tính Nhanh 3/1.4 + 3/4.7 +3/7.10 +....+ 3/94.97 + 3/97.100
\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{94.97}+\frac{3}{97.100}\)
\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{94}-\frac{1}{97}+\frac{1}{97}-\frac{1}{100}\)
\(=\frac{1}{1}-\frac{1}{100}=\frac{100}{100}-\frac{1}{100}=\frac{99}{100}\)
\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{94.97}+\frac{3}{97.100}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{94}-\frac{1}{97}+\frac{1}{97}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
tại sao ko đóng mở ngoặc phép tính rồi nhân 3 vậy?
so sánh 3/1.4+3/4.7+3/7.10+....+3/91.94+3/94.97 với 1
\(\frac{3}{1.4}+\frac{3}{4.7}+.....+\frac{3}{94.97}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.........+\frac{1}{94}-\frac{1}{97}\)
\(=1-\frac{1}{97}\)
\(=\frac{96}{97}\)
mà \(\frac{96}{97}< 1\)
\(\Rightarrow\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{94.07}< 1\)
vậy..................
\(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{91\cdot94}+\frac{3}{94\cdot97}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{94}-\frac{1}{97}\)
\(=1-\frac{1}{97}\)
\(=\frac{96}{97}\)
\(\Rightarrow\frac{96}{97}< 1\)
\(\Rightarrow\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{94\cdot97}< 1\)
Vậy \(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{94\cdot97}< 1\)
So sánh 3/1.4 + 3/4.7+ 3/7.10+...+3/91.94+3/94.97 với 1
Ta có: \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{94.97}\)
\(\Leftrightarrow1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{94}-\frac{1}{97}\)
\(\Leftrightarrow1-\frac{1}{97}=\frac{96}{97}\)
Do \(\frac{96}{97}< 1\Rightarrow\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{94.97}< 1\)
Vậy:.............................<1
bài 6: tìm x: x + 5/ 2005 + x + 6/ 2004 + x + 7/ 2003 = -3.
bài 7: tính: A= 3/ 1.4 + 3/ 4.7 + 3/ 7.10 +...+ 3/ 94.97 + 3/ 97.100
giúp mình vs mọi người
câu 6 dễ mà câu 7
A=3-3/4+3/4-3/7+3/7-3/10+...+3/94-3/97+3/97-3/100
A=3-3/100
A=300/100-3/100
A=297/100
Câu 6:
\(\frac{x+5}{2005}+\frac{x+6}{2004}+\frac{x+7}{2003}=-3\)
=>\(\left(\frac{x+5}{2005}+1\right)+\left(\frac{x+6}{2004}+1\right)+\left(\frac{x+7}{2003}+1\right)=-3+3=0\)
=>\(\frac{x+2010}{2005}+\frac{x+2010}{2006}+\frac{x+2010}{2007}=0\)
=>x+2010=0
=>x=-2010
Câu 7:
\(A=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\cdots+\frac{3}{97\cdot100}\)
\(=1-\frac14+\frac14-\frac17+\cdots+\frac{1}{97}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
5/1.4+5/4.7+5/7.10+...+5/97.100
giúp mình với
5/1.4 + 5/4.7 + 5/7.10 + ... + 5/97.100
= 5/3 . (3/1.4 + 3/4.7 + 3/7.10 + ... + 3/97.100)
= 5/3 . (1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + ... + 1/97 - 1/100)
= 5/3 . ( 1 - 1/100)
= 5/3 . 99/100
= 33/20
ai có thể giúp mình giải bài này với :
3/1.4 + 3/4.7 + 3/7.10 +...+ 3/40.43
= 1/1-1/4+1/4-1/7+1/7-1/10+...+1/40-1/43
=1/1-1/43
=42/43
(^_^)
\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}\)
\(=1-\frac{1}{43}=\frac{42}{43}\)
\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{40.43}\)
= \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{40}-\frac{1}{43}\)
= \(1-\frac{1}{43}\)
= \(\frac{42}{43}\)
tinh tong :
\(\dfrac{3}{1.4}\) + \(\dfrac{3}{4.7}\) + \(\dfrac{3}{7.10}\) +.............+\(\dfrac{3}{94.97}\)
\(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{94.97}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{94}-\dfrac{1}{97}\)
\(=1-\dfrac{1}{97}\)
\(=\dfrac{96}{97}\)
\(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{94.97}\)
\(=3\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{94}-\dfrac{1}{97}\right)\)
\(=3\left(1-\dfrac{1}{97}\right)\)
\(=3.\dfrac{96}{97}=\dfrac{288}{97}\)
\(=\dfrac{1}{3}.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{37.40}\right)\)
\(=\dfrac{1}{3}.\left(3-\dfrac{3}{4}+\dfrac{3}{4}-\dfrac{3}{7}+\dfrac{3}{7}-\dfrac{3}{10}+...+\dfrac{3}{37}-\dfrac{3}{40}\right)\)
= \(\dfrac{1}{3}.\left(3-\dfrac{3}{40}\right)\)
= \(\dfrac{1}{3}.\dfrac{117}{40}\)
\(=\dfrac{39}{40}\)