Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cíu iem
Xem chi tiết
Huỳnh Thị Thanh Ngân
18 tháng 10 2021 lúc 19:49

Do câu d mình ko biết làm bởi v mình không làm được

undefined

 

duka
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 10 2021 lúc 21:10

1A:

a: \(x^3+2x=x\left(x^2+2\right)\)

b: \(3x-6y=3\left(x-2y\right)\)

c: \(5\left(x+3y\right)-15x\left(x+3y\right)\)

\(=5\left(x+3y\right)\left(1-3x\right)\)

d: \(3\left(x-y\right)-5x\left(y-x\right)\)

\(=3\left(x-y\right)+5x\left(x-y\right)\)

\(=\left(x-y\right)\left(5x+3\right)\)

Koro-sensei
7 tháng 10 2021 lúc 21:13

1A. a. x(x2+2) 

b. 3(x-2y)

c. 5(x+3y)(1-3x) 

d. (x-y) (3-5x)

1B. a. 2x(2x-3)

b.xy(x2-2xy+5)

c. 2x(x+1)(x+2)

d. 2x(y-1)+2y(y-1)=2(y-1)(x-y)

 

Nguyễn Lê Phước Thịnh
7 tháng 10 2021 lúc 21:20

1B:

a: \(4x^2-6x=2x\left(2x-3\right)\)

b: \(x^3y-2x^2y^2+5xy\)

\(=xy\left(x^2-2xy+5\right)\)

Tố Quyên
Xem chi tiết
Toru
11 tháng 12 2023 lúc 17:43

a) $x^3-3x^2y+4x-12y$

$=(x^3-3x^2y)+(4x-12y)$

$=x^2(x-3y)+4(x-3y)$

$=(x-3y)(x^2+4)$

b) $4x^2-y^2+4y-4$

$=4x^2-(y^2-4y+4)$

$=(2x)^2-(y^2-2\cdot y\cdot2+2^2)$

$=(2x)^2-(y-2)^2$

$=[2x-(y-2)][2x+(y-2)]$

$=(2x-y+2)(2x+y-2)$

c) $9x^2-6x-y^2+2y$

$=(9x^2-y^2)-(6x-2y)$

$=[(3x)^2-y^2]-2(3x-y)$

$=(3x-y)(3x+y)-2(3x-y)$

$=(3x-y)(3x+y-2)$

$\text{#}Toru$

A DUY
11 tháng 12 2023 lúc 17:37

bạn ấn ở chỗ x2 cho rõ hơn nhé

Hồ Hữu Duyy
Xem chi tiết
Nguyễn Minh Anh
8 tháng 1 2022 lúc 8:36

a) \(=5x\left(x-2\right)\)

b) \(=\left(2x\right)^2-2x.2+1-y^2=\left(2x-1\right)^2-y^2=\left(2x-1-y\right)\left(2x-1+y\right)\)

Knight™
8 tháng 1 2022 lúc 8:36

1/
a) 3x2(2x−1)
= 6x3-3x2
2/
a) \(5x^2-10x\)
\(5x\left(x-2\right)\)
b) \(4x^2-y^2-4x+1\)
\(4x^2-4x+1-y^2\)
\(\left(2x-1\right)^2-y^2\)
\(\left(2x-1-y\right)\left(2x-1+y\right)\)

Thanh Hoàng Thanh
8 tháng 1 2022 lúc 8:37

a) \(3x^2\left(2x-1\right)=6x^3-3x^2.\)

a) \(5x^2-10x=5x\left(x-2\right).\)

b) \(4x^2-y^2-4x+1=\left(2x-1\right)^2-y^2=\left(2x-1-y\right)\left(2x-1+y\right).\)

Dương
Xem chi tiết
ILoveMath
31 tháng 7 2021 lúc 16:33

a) x3+4x-5 = x3-x2+x2+4x-5=(x3-x2)+(x2-x)+(5x-5)=x2(x-1)+x(x-1)+5(x-1)=(x2+x+5)(x-1)

b) x3-3x2+4=x3-2x2-x2+4=(x3-2x2)-(x2-4)=x2(x-2)-(x-2)(x+2)=(x2-x+2)(x-2)

c) x3+2x2+3x+2=x3+x2+x2+x+2x+2=(x3+x2)+(x2+x)+(2x+2)=x2(x+1)+x(x+1)+2(x+1)=(x2+x+2)(x+1)

d) bạn xem lại đề đúng ko

e) (x2+3x)2-2(x2+3x)-8=x4+6x3+9x2-2x2-6x-8=x4+6x3+7x2-6x-8=x4-x3+7x3-7x2+14x2-14x+8x-8=(x4-x3)+(7x3-7x2)+(14x2-14x)+(8x-8)=x3(x-1)+7x2(x-1)+14x(x-1)+8(x-1)=(x3+7x2+14x+8)(x-1)=(x3+x2+6x2+6x+8x+8)(x-1)=\(\left[\left(x^3+x^2\right)+\left(6x^2+6x\right)+\left(8x+8\right)\right]\left(x-1\right)\)\(=\left[x^2\left(x+1\right)+6x\left(x+1\right)+8\left(x+1\right)\right]\left(x-1\right)\)\(=\left(x^2+6x+8\right)\left(x+1\right)\left(x-1\right)\)\(=\left(x^2+2x+4x+8\right)\left(x+1\right)\left(x-1\right)\)\(=\left[\left(x^2+2x\right)+\left(4x+8\right)\right]\left(x+1\right)\left(x-1\right)\)\(=\left[x\left(x+2\right)+4\left(x+2\right)\right]\left(x+1\right)\left(x-1\right)\)=\(\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x+4\right)\)

f) (x2+4x+10)2-7(x2+4x+11)+7=(x2+4x+10)2-\(\left[7\left(x^2+4x+11\right)-7\right]\)\(=\left(x^2+4x+10\right)^2-7\left(x^2+4x+10\right)\)\(=\left(x^2+4x+10\right)\left(x^2+4x+3\right)\)

Nguyễn Lê Phước Thịnh
31 tháng 7 2021 lúc 23:10

a) Ta có: \(x^3+4x-5\)

\(=x^3-x+5x-5\)

\(=x\left(x-1\right)\left(x+1\right)+5\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+5\right)\)

b) Ta có: \(x^3-3x^2+4\)

\(=x^3+x^2-4x^2+4\)

\(=x^2\left(x+1\right)-4\left(x-1\right)\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-4x+4\right)\)

\(=\left(x+1\right)\cdot\left(x-2\right)^2\)

c) Ta có: \(x^3+2x^2+3x+2\)

\(=x^3+x^2+x^2+x+2x+2\)

\(=x^2\left(x+1\right)+x\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+x+2\right)\)

d) Ta có: \(x^2+2xy+y^2+2x+2y-3\)

\(=\left(x+y\right)^2+2\left(x+y\right)-3\)

\(=\left(x+y\right)^2+3\left(x+y\right)-\left(x+y\right)-3\)

\(=\left(x+y\right)\left(x+y+3\right)-\left(x+y+3\right)\)

\(=\left(x+y+3\right)\left(x+y-1\right)\)

Nguyễn Lê Phước Thịnh
31 tháng 7 2021 lúc 23:12

e) Ta có: \(\left(x^2+3x\right)^2-2\left(x^2+3x\right)-8\)

\(=\left(x^2+3x\right)^2-4\left(x^2+3x\right)+2\left(x^2+3x\right)-8\)

\(=\left(x^2+3x\right)\left(x^2+3x-4\right)+2\left(x^2+3x-4\right)\)

\(=\left(x^2+3x-4\right)\left(x^2+3x+2\right)\)

\(=\left(x+4\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)\)

f) Ta có: \(\left(x^2+4x+10\right)^2-7\left(x^2+4x+11\right)+7\)

\(=\left(x^2+4x+10\right)^2-7\left(x^2+4x+10\right)-7+7\)

\(=\left(x^2+4x+10\right)\left(x^2+4x+10-7\right)\)

\(=\left(x^2+4x+3\right)\left(x^2+4x+10\right)\)

\(=\left(x+1\right)\left(x+3\right)\left(x^2+4x+10\right)\)

Triều Nguyễn
Xem chi tiết
Nguyễn Hoàng Minh
17 tháng 11 2021 lúc 15:53

\(1,\\ a,=2x^2+2x\\ b,=x^2+4x+3-4=x^2+4x-1\\ c,=x^2+4x+4+3x-5=x^2+7x-1\\ 2,\\ a,=3\left(x+y\right)\\ b,=\left(x-3\right)^2\\ c,=7\left(x+y\right)\\ 3,\\ \Leftrightarrow\left(x-1\right)\left(3x-5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{5}{3}\end{matrix}\right.\)

Nguyễn Thanh Bình
17 tháng 11 2021 lúc 15:55

a) 2x2+2x

Vũ Duy Đạt
Xem chi tiết
Nguyễn Hoàng Minh
10 tháng 12 2021 lúc 14:54

\(a,=xy\left(x+2y+1\right)\\ b,=x^2\left(x+1\right)-4\left(x+1\right)=\left(x+1\right)\left(x-2\right)\left(x+2\right)\\ c,=x^2-5x+3x-15=\left(x-5\right)\left(x+3\right)\\ d,=\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2=\left(x-2\right)\left(x+2+x-2\right)=2x\left(x-2\right)\\ e,=\left(x+1\right)^2-y^2=\left(x+y+1\right)\left(x-y+1\right)\\ g,=\left(x+9-6x\right)\left(x+9+6x\right)=\left(9-5x\right)\left(7x+9\right)\\ h,=\left(x-y\right)^2-\left(z-t\right)^2=\left(x-y-z+t\right)\left(x-y+z-t\right)\\ i,=\left(x-1\right)^3-y^3=\left(x-y-1\right)\left(x^2-2x+1+xy+y+y^2\right)\)

Nguyễn Lê Phước Thịnh
10 tháng 12 2021 lúc 14:54

c: =(x-5)(x+3)

e: =(x+1-y)(x+1+y)

ThyXingGái
Xem chi tiết
Nguyễn Hoàng Minh
15 tháng 12 2021 lúc 16:25

\(a,=x\left(x-2\right)^2\\ b,=\left(x-y\right)^2-9=\left(x-y-3\right)\left(x-y+3\right)\\ c,=x^2\left(2x-1\right)-4\left(2x-1\right)=\left(x-2\right)\left(x+2\right)\left(2x-1\right)\\ d,=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x-y\right)\left(x+y-5\right)\\ e,=3\left[\left(x-y\right)^2-4z^2\right]=3\left(x-y-2z\right)\left(x-y+2z\right)\\ f,=x\left[\left(x-2\right)^2-y^2\right]=x\left(x-y-2\right)\left(x+y-2\right)\\ g,=x\left[\left(x-y\right)^2-25\right]=x\left(x-y-5\right)\left(x-y+5\right)\\ h,=x^3-x-2x+2=x\left(x-1\right)\left(x+1\right)-2\left(x-1\right)\\ =\left(x-1\right)\left(x^2+x-2\right)=\left(x-1\right)^2\left(x+2\right)\\ i,=3x^2+3x-10x-10=\left(x+1\right)\left(3x-10\right)\)

Hoàng Việt
Xem chi tiết
Nguyễn Hoàng Minh
21 tháng 12 2021 lúc 11:07

\(a,=2xy\left(2y-x\right)\\ b,=x^2\left(x-4\right)+5\left(x-4\right)=\left(x^2+5\right)\left(x-4\right)\\ c,=\left(x-y\right)\left(x^2-25\right)=\left(x-y\right)\left(x-5\right)\left(x+5\right)\)