Cho phuong trìnhx2 - (2m+1)x+m-m-1=0
A cmr: phương trình đã cho luôn có nghiệm với mọi m
B cmr: có 1 hệ thức giữa 2 nghiêm số không phụ thuộc vào m
Cho phương trình: x2-(2a-1)x-4a-3=0
a)CMR: phương trình luôn có nghiệm với mọi giá trị của a
b) Tìm hệ thức liên hệ giữa 2 nghiệm x1,x2 không phụ thuộc vào a
c) Tìm giá trị nhỏ nhất của biểu thức A=x12+x22
\(x^2-\left(2a-1\right)x-4a-3=0\)
\(\Delta=\left(2a-1\right)^2+4\left(4a+3\right)\)
\(=4a^2-4a+1+16a+12\)
\(=4a^2+12a+13=\left(2a+3\right)^2+4>0\)
Vì \(\Delta>0\Rightarrow\) phương trình có 2 nghiệm phân biệt với mọi a
Vì phương trình có 2 nghiệm phân biệt, áp dụng hệ thức Vi-ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2a-1\\x_1.x_2=-4a-3\end{matrix}\right.\) ⇒ \(x_1.x_2+2\left(x_1+x_2\right)=-5\)
Ta có:
\(A=x_1^2+x^2_2=\left(x_1+x_2\right)^2-2x_1.x_2\)
\(=\left(2a-1\right)^2-2\left(-4a-3\right)\)
\(=4a^2-4a+1+8a+6\)
\(=\left(2a+1\right)^2+6\)
Vì \(\left(2a+1\right)^2\ge0\forall a\)
⇒\(A\ge6\)
Min A=6 <=> \(a=-\dfrac{1}{2}\)
cho phương trình x^2-2(m+1)x+2m=0 (m là tham số)
1) chứng minh phương trình luôn có hai nghiệm phân biệt với mọi m
2) tìm các giá trị của m để phương trình có hai nghiệm cùng dương
3) tìm hệ thức liên hệ giữa hai nghiệm không phụ thuộc vào m
\(x^2-2\left(m+1\right)x+2m=0\left(1\right)\)
a, \(\Delta'=\left(m+1\right)^2-2m=m^2+>0\forall m\)
⇒ Phương trình có hai nghiệm phân biệt
b, Để phương trình có hai nghiệm cùng dương thì :
\(\left\{{}\begin{matrix}\Delta'>0\\S>0\\P>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2+1>0\left(luôn-đúng\right)\\2\left(m+1\right)>0\\2m>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m>0\end{matrix}\right.\)\(\Leftrightarrow m>0\)
c, Theo viét \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\left(2\right)\\x_1x_2=2m\left(3\right)\end{matrix}\right.\)
Trừ vế theo vế (2) cho (3) được : \(x_1+x_2-x_1x_2=2m+2-2m=2\)
Kết luận ....
Cho phương trình \(x^2-2\left(m-1\right)x+2m-3=0\) (1)
a. Giải phương trình khi m = 1
b. Chứng minh rằng phương trình luôn có nghiệm với mọi m
c. Tìm m để (1) có 2 nghiệm trái dấu
d. Tìm hệ thức liên hệ giữa \(x_1,x_2\) không phụ thuộc vào m
a, Thay m = 1 ta đc
\(x^2-1=0\Leftrightarrow x=1;x=-1\)
b, \(\Delta'=\left(m-1\right)^2-\left(2m-3\right)=m^2-4m+4=\left(m-2\right)^2\)
Để pt có 2 nghiệm pb khi delta' > 0
\(m-2\ne0\Leftrightarrow m\ne2\)
c, để pt có 2 nghiệm trái dấu khi \(x_1x_2=2m-3< 0\Leftrightarrow m< \dfrac{3}{2}\)
d.
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=2m-3\end{matrix}\right.\)
Trừ vế cho vế:
\(\Rightarrow x_1+x_2-x_1x_2=1\)
Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m
Cho phương trình: x2 - mx + m -3 = 0
a) Giải phương trình với m = 1.
b) Chứng minh: Phương trình luôn có 2 nghiệm phân biệt với mọi m.
c) Tìm 1 hệ thức liên hệ giữa 2 nghiệm của phương trình mà không phụ thuộc vào m.
d) Tìm m để x1/x2 + x2/x1 = -5/2
CẦN GẤP LẸ MỌI NGƯỜI ƠI!!
Cho phương trình X^2 - 2(m + 1)x + m - 6 = 0 (1) , ( với m là tham số )
a> Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt x1; x2 với mọi giá trị của m
b> Tìm một hệ thức liên hệ giữa x1 ; x2 không phụ thuộc vào m
c> với giá trị nào của m thì phương trình (1) có ít nhất một nghiệm dương
a: Δ=(2m+2)^2-4(m-6)
=4m^2+8m+4-4m+24
=4m^2+4m+28
=(2m+1)^2+27>0
=>Phương trình luôn có hai nghiệm phân biệt
c: Để (1) có ít nhất 1 nghiệm dương thì
m-6<0 hoặc (2m+2>0 và m-6>0)
=>m>6 hoặc m<6
Cho phương trình: x2 - 2(m -1)x +m -5 = 0
a) Tìm m để phương trình có nghiệm
b) Tìm hệ thức liên hệ giữa hai nghiệm không phụ thuộc vào m
a: \(\text{Δ}=\left(2m-2\right)^2-4\left(m-5\right)\)
=4m^2-8m+4-4m+20
=4m^2-12m+24
=(2m-3)^2+15>0
=>Phương trình luôn có nghiệm
b: x1+x2=2m-2; x1x2=m-5
x1+x2=2m-2; 2x1x2=2m-10
=>x1+x2-2x1x2=2m-2-2m+10=8 là hệ thức ko phụ thuộc vào m
Bài 3 (2,5d) Cho phương trình: (m là tham số )(1)
a) Chứng minh phương trình (1) luôn có hai nghiêm phân biệt với mọi giá trị của m
b) Tìm giá trị của m để phương trình (1) có hai nghiêm thỏa mãn điều kiện:
c) Tìm hệ thức liên hệ giữa không phụ thuộc giá trị của M
a/ Xét : \(\Delta=m^2+4>0\forall m\)
\(\Leftrightarrow\) Phương trình luôn có 2 nghiệm pb
b/ Theo định lí Viet ta có :
\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1.x_2=-4\end{matrix}\right.\)
Mầ : \(x_1^2+x_2^2=5\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=5\)
\(\Leftrightarrow m^2+8=5\)
\(\Leftrightarrow\) Ko tìm đc m
c/Hệ thức ko phụ thuộc vào giá trị của m :
\(x_1.x_2=-4\)
a: \(\text{Δ}=\left(-m\right)^2-4\cdot1\cdot\left(-4\right)=m^2+16>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
b: Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2=5\)
\(\Leftrightarrow m^2-2\cdot\left(-4\right)=5\)
\(\Leftrightarrow m^2+8=5\)(vô lý)
Cho phương trình (ẩn x):x^2+ 2.(m+2)+4m-1=0(1).chứng minh với mọi giá trị của m phương trình(1) luôn có 2 nghiệm phân biệt .Tìm 1 hệ thức liên hệ giữa 2 nghiệm đó của phương trình (1) không phụ thuộc vào m
1) xét delta là được
2) áp đụng định lý viet ta có x1+x2 = -2(m+2) = -2m-4 => 2x1 + 2x2 = -4m -8
x1.x2 = 4m-1
ta có 2x1 + 2x2 + x1x2 = -4m-8+4m-1 = -9
vậy hệ thức cần lập là 2x1 + 2x2 + x1x2 = -9
delta= (m+2)^2-1(4m-1)=m^2 +5 >0 (luôn đúng với mọi m)
dùng Vi-et: Gọi a và b là hai nghiệm của phương trình
a+b= -2(m+2)
= -4m-4 (1)
ab=4m-1(2)
(1)+(2)
a+b+ab=-5
Cho phương trình : x^2 - 2(m+1)x + 2m = 0
a) Chứng minh phương trình luôn có 2 nghiệm phân biệt với mọi m
b) Tìm các giá trị của m để phương trình có 2 nghiệm phân biệt cùng dương
c) Tìm hệ thức liên hệ giữa 2 nghiệm không phụ thuộc m