Những câu hỏi liên quan
Nguyễn Thanh Hiền
Xem chi tiết
Kiêm Hùng
6 tháng 8 2019 lúc 11:39
Bình luận (2)
Trường Xuân
Xem chi tiết
Monkey D Jhin
18 tháng 2 2017 lúc 21:29

thieu de bai

Bình luận (0)
Nguyễn Phương Thảo
Xem chi tiết
Truong_tien_phuong
Xem chi tiết
Nam Phạm An
Xem chi tiết
Nam Phạm An
Xem chi tiết
Akai Haruma
23 tháng 8 2019 lúc 0:08

Lời giải:
BĐT đã cho tương đương với:

\(\frac{a}{b}-\frac{b}{a}+\frac{b}{c}-\frac{c}{b}+\frac{c}{a}-\frac{a}{c}\geq 0\)

\(\Leftrightarrow \frac{a^2-b^2}{ab}+\frac{b^2-c^2}{bc}+\frac{c^2-a^2}{ca}\geq 0\)

\(\Leftrightarrow \frac{a^2-b^2}{ab}-\frac{(a^2-b^2)+(c^2-a^2)}{bc}+\frac{c^2-a^2}{ca}\geq 0\)

\(\Leftrightarrow (a^2-b^2)\left(\frac{1}{ab}-\frac{1}{bc}\right)+(c^2-a^2)\left(\frac{1}{ca}-\frac{1}{bc}\right)\geq 0\)

\(\Leftrightarrow (a^2-b^2)(c-a)+(c^2-a^2)(b-a)\geq 0\)

\(\Leftrightarrow (a-b)(a+b)(c-a)-(c-a)(c+a)(a-b)\geq 0\)

\(\Leftrightarrow (a-b)(b-c)(c-a)\geq 0\) (luôn đúng với mọi $0< a\leq b\leq c$)

Ta có đpcm.

Dấu "=" xảy ra khi $a=b$ hoặc $b=c$ hoặc $c=a$

Bình luận (0)
Phạm Quốc Anh
Xem chi tiết
alibaba nguyễn
22 tháng 1 2017 lúc 5:27

Đặt: \(P=\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\)

Từ đề bài ta có: \(abc\ge0\)

Ta chứng minh: \(\frac{a}{1+bc}\le\frac{2a}{2+abc}\)

\(\Leftrightarrow2a+a^2bc\le2a+2abc\)

\(\Leftrightarrow abc\left(2-a\right)\ge0\)(đúng)

Tương tự ta có:

\(\frac{b}{1+ac}\le\frac{2b}{2+abc}\)

\(\frac{c}{1+ab}\le\frac{2c}{2+abc}\)

\(\Rightarrow P\le\frac{2\left(a+b+c\right)}{2+abc}\)

\(\Rightarrow P-2\le\frac{2\left(a+b+c-2-abc\right)}{2+abc}\)

\(=-\frac{2\left(\left(1-a\right)\left(1-b\right)+\left(1-c\right)\left(1-ab\right)\right)}{2+abc}\)

 \(\le0\)(vì \(0\le a\le b\le c\le1\))

\(\Rightarrow P\le2\)

Vậy \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\)

Bình luận (0)
Thắng Nguyễn
23 tháng 1 2017 lúc 12:59

Từ \(\hept{\begin{cases}a\le1\Rightarrow a-1\le0\\b\le1\Rightarrow b-1\le0\end{cases}}\) suy ra \(\left(a-1\right)\left(b-1\right)\ge0\)

\(\Rightarrow ab-a-b+1\ge0\Rightarrow ab+1\ge a+b\Rightarrow2ab+1\ge a+b\left(ab\ge0\right)\)

\(\Rightarrow2ab+2\ge a+b+c\left(1\ge c\right)\)

\(\Rightarrow\frac{1}{2ab+2}\le\frac{1}{a+b+c}\Rightarrow\frac{1}{2\left(ab+1\right)}\le\frac{1}{a+b+c}\Rightarrow\frac{c}{ab+1}\le\frac{2c}{a+b+c}\)

Tương tự ta có: \(\hept{\begin{cases}\frac{a}{bc+1}\le\frac{2a}{a+b+c}\\\frac{b}{ac+1}\le\frac{2b}{a+b+c}\end{cases}}\).Cộng theo vế ta có:

\(VT\le\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=2\)

quá nhiều ý tưởng mà ko ai vào chém à

Bình luận (0)
Phan Thanh Tuấn
23 tháng 1 2017 lúc 15:19

Chứng minh rằng bạn rất rất rất ........................rất ngu

Bình luận (0)
Phạm Vân Anh
Xem chi tiết
tth_new
7 tháng 4 2020 lúc 19:37

BĐT bên trái hiển nhiên là Nesbitt.

BĐT bên phải: 

Sau khi quy đồng, phân tích thành nhân tử các kiểu gì đó thì cần chứng minh:

${a}^{6}b+{a}^{6}c-{a}^{5}{b}^{2}-{a}^{5}{c}^{2}-{a}^{2}{b}^{5}-{a}^{2}
{c}^{5}+a{b}^{6}+a{c}^{6}+{b}^{6}c-{b}^{5}{c}^{2}-{b}^{2}{c}^{5}+b{c}^
{6} \geqq 0$

Giả sử $c=\min\{a,b,c\}$. Ta cần chứng minh:

Đặt $a=c+x,b=c+y,c=c$ thì $x,y \geqq 0$.

Cần chứng minh: 

$\left( 8\,{x}^{2}-8\,xy+8\,{y}^{2} \right) {c}^{5}+10\, \left( x+y
 \right)  \left( 2\,{x}^{2}-3\,xy+2\,{y}^{2} \right) {c}^{4}+ \left( 
20\,{x}^{4}-20\,{x}^{2}{y}^{2}+20\,{y}^{4} \right) {c}^{3}+5\, \left( 
x+y \right)  \left( xy \left( 7\,{x}^{2}-13\,xy+7\,{y}^{2} \right) +2
\, \left( x-y \right) ^{4} \right) {c}^{2}+ \left( xy \left( xy
 \left( 29\,{x}^{2}-56\,xy+29\,{y}^{2} \right) +16\, \left( x-y
 \right) ^{4} \right) +2\, \left( x-y \right) ^{6} \right) c+xy
 \left( x+y \right)  \left( {x}^{2}+{y}^{2} \right)  \left( x-y
 \right) ^{2} \geqq 0$

P/s: Bài này SOS bằng tay đẹp lắm mà thôi tạm thời làm biếng nên không SOS, dùng BW cho nhanh:P

Bình luận (0)
 Khách vãng lai đã xóa
zZz Cool Kid_new zZz
14 tháng 4 2020 lúc 15:51

SOS của tth_new ghê vãi,đề nghị tth_new check fb giúp t,nói mãi -_-

KMTTQ giả sử \(a\ge b\ge c\)

\(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}+\frac{c^2}{a^2+b^2}\ge\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

\(\Leftrightarrow\left(\frac{a^2}{b^2+c^2}-\frac{a}{b+c}\right)+\left(\frac{b^2}{c^2+a^2}-\frac{b}{c+a}\right)+\left(\frac{c^2}{a^2+b^2}-\frac{c}{a+b}\right)\ge0\)

\(\Leftrightarrow a\left(\frac{a}{b^2+c^2}-\frac{a}{b+c}\right)+b\left(\frac{b}{c^2+a^2}-\frac{b}{c+a}\right)+c\left(\frac{c}{a^2+b^2}-\frac{c}{a+b}\right)\ge0\)

\(\Leftrightarrow a\left[\frac{ab+ac-b^2-c^2}{\left(b+c\right)\left(b^2+c^2\right)}\right]+b\left[\frac{bc+ba-c^2-a^2}{\left(c+a\right)\left(c^2+a^2\right)}\right]+c\left[\frac{ca+cb-a^2-b^2}{\left(a^2+b^2\right)\left(a+b\right)}\right]\ge0\)

\(\Leftrightarrow a\left[\frac{b\left(a-b\right)+c\left(a-c\right)}{\left(b+c\right)\left(b^2+c^2\right)}\right]+b\left[\frac{c\left(b-c\right)+a\left(b-a\right)}{\left(c^2+a^2\right)\left(c+a\right)}\right]+c\left[\frac{a\left(c-a\right)+b\left(c-b\right)}{\left(a^2+b^2\right)\left(a+b\right)}\right]\ge0\)

\(\Leftrightarrow\Sigma\left[\frac{ab\left(a-b\right)}{\left(b^2+c^2\right)\left(b+c\right)}-\frac{ab\left(a-b\right)}{\left(c^2+a^2\right)\left(c+a\right)}\right]\ge0\)

\(\Leftrightarrow\Sigma ab\left(a-b\right)\left[\frac{1}{\left(b^2+c^2\right)\left(b+c\right)}-\frac{1}{\left(c^2+a^2\right)\left(c+a\right)}\right]\ge0\) ( đúng )

Vậy ta có ĐPCM

Bình luận (0)
 Khách vãng lai đã xóa
tth_new
14 tháng 4 2020 lúc 16:16

zZz Cool Kid_new zZz đoạn cuối quy đồng lên đê, khỏi giả sử.

Xem thêm tại: https://h o c 2 4 .vn/hoi-dap/question/826398.html

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Mai
Xem chi tiết