cmr \(\dfrac{a^4+b^4}{2}+a^2+b^2\ge ab\left(a+b+1\right)\) với mọi số thực a,b
cho a,b,c là số thực dương. Cmr:
1.\(\dfrac{a}{b^2+bc+c^2}+\dfrac{b}{c^2+ca+a^2}+\dfrac{c}{a^2+ab+b^2}\ge\dfrac{a+b+c}{ab+bc+ca}\)
2.\(\left(a+b+c\right)\left(\dfrac{a}{\left(b+c\right)^2}+\dfrac{b}{\left(c+a\right)^2}+\dfrac{c}{\left(a+b\right)^2}\right)\ge\dfrac{9}{4}\)
Bài 1
\(VT=\dfrac{a^2}{ab^2+abc+ac^2}+\dfrac{b^2}{c^2b+abc+a^2b}+\dfrac{c^2}{a^2c+abc+b^2c}\)
Áp dụng bđt Cauchy dạng phân thức
\(\Rightarrow VT\ge\dfrac{\left(a+b+c\right)^2}{ab\left(a+b\right)+abc+ac\left(a+c\right)+abc+bc\left(b+c\right)+abc}\)
\(\Leftrightarrow VT\ge\dfrac{\left(a+b+c\right)^2}{ab\left(a+b+c\right)+ac\left(a+b+c\right)+bc\left(a+b+c\right)}=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)\left(ab+bc+ac\right)}\)
\(\Leftrightarrow VT\ge\dfrac{a+b+c}{ab+bc+ac}\left(đpcm\right)\)
Dấu ''='' xảy ra khi \(a=b=c\)
Bài 2
\(VT=\left(\sqrt{a^2}+\sqrt{b^2}+\sqrt{c^2}\right)\left[\left(\dfrac{\sqrt{a}}{b+c}\right)^2+\left(\dfrac{\sqrt{b}}{c+a}\right)^2+\left(\dfrac{\sqrt{c}}{a+b}\right)^2\right]\)
Áp dụng bđt Bunhiacopxki ta có
\(VT\ge\left(\sqrt{a}.\dfrac{\sqrt{a}}{b+c}+\sqrt{b}.\dfrac{\sqrt{b}}{c+a}+\sqrt{c}.\dfrac{\sqrt{c}}{a+b}\right)^2\)
\(\Leftrightarrow VT\ge\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)^2\)
Xét \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
Áp dụng bđt Cauchy dạng phân thức ta có
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ca+bc}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}=\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ac\right)}=\dfrac{3}{2}\)
\(\Rightarrow\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)^2\ge\left(\dfrac{3}{2}\right)^2=\dfrac{9}{4}\)
\(\Rightarrow VT\ge\dfrac{9}{4}\left(đpcm\right)\)
Dấu '' = '' xảy ra khi \(a=b=c\)
Cho 3 số dương a,b,c
CMR : \(\dfrac{1}{\left(a+b\right)^2}+\dfrac{1}{\left(b+c\right)^2}+\dfrac{1}{\left(a+c\right)^2}\ge\dfrac{9}{4\left(ab+ac+bc\right)}\)
Đây là BĐT Iran 96 khá nổi tiếng. Bạn hoàn toàn có thể search trên google lời giải.
Cho a,b,c là các số thực dương CMR : \(\dfrac{a}{\left(b+c\right)^2}+\dfrac{b}{\left(c+a\right)^2}+\dfrac{c}{\left(a+b\right)^2}\ge\dfrac{9}{4\left(a+b+c\right)}\)
\(\left(a+b+c\right)\left(\dfrac{a}{\left(b+c\right)^2}+\dfrac{b}{\left(c+a\right)^2}+\dfrac{c}{\left(a+b\right)^2}\right)\ge\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)^2\ge\dfrac{9}{4}\)
\(\Rightarrow\dfrac{a}{\left(b+c\right)^2}+\dfrac{b}{\left(c+a\right)^2}+\dfrac{c}{\left(a+b\right)^2}\ge\dfrac{9}{4\left(a+b+c\right)}\)
Dấu "=" xảy ra khi \(a=b=c\)
giả sử a,b,c là các số thực dương CMR
\(\dfrac{b^2c^3}{a^2\left(b+c\right)^3}+\dfrac{c^2a^3}{b^2\left(a+c\right)^3}+\dfrac{a^2c^3}{c^2\left(a+b\right)^3}\ge\dfrac{9abc}{4\left(3abc+ab^2+bc^2+ca^2\right)}\)
BT1: Cho a,b,c>0. CMR: \(\left(a+\dfrac{1}{a}\right)^2+\left(b+\dfrac{1}{b}\right)^2+\left(c+\dfrac{1}{c}\right)^2>33\)
BT2: Cho a,b,c là các số thực. CMR:
\(a^2+b^2+c^2\ge ab+bc+ac+\dfrac{\left(a-b\right)^2}{26}+\dfrac{\left(b-c\right)^2}{6}+\dfrac{\left(c-a\right)^2}{2009}\)
Mk đang cần gấp. Giúp mk với!!!
BT2: Nhân 2 lên, chuyển vế, biến đổi bla..... sẽ ra đpcm
CMR: a + \(\dfrac{4}{\left(a-b\right)\left(b+1\right)^2}\) \(\ge\) 3 với mọi a,b >0.
Đặt \(A=x+\dfrac{4}{\left(x-y\right)\left(y+1\right)^2}\ge3\)
\(=\left(x-y\right)+\dfrac{4}{\left(x-y\right)\left(y+1\right)^2}+\left(y+1\right)-1\)
Áp dụng BĐT Cô-si cho 2 số dương ta có :
\(\left(x-y\right)+\dfrac{4}{\left(x-y\right)\left(y+1\right)^2}\ge2\sqrt{\dfrac{\left(x-y\right).4}{\left(x-y\right)\left(y+1\right)^2}}=\dfrac{4}{y+1}\)
Xảy ra khi : \(\left(x-y\right)\left(y+1\right)=2\) ( do \(a,b>0\))
\(\Rightarrow A\ge\dfrac{4}{y+1}+\left(y+1\right)-1\)
Sử dụng Cô-Si lần nữa, ta có :
\(\dfrac{4}{y+1}+\left(y+1\right)\ge2\sqrt{\dfrac{4}{y+1}\left(y+1\right)}=2.2=4\)
Xảy ra khi \(\left(y+1\right)^2=4\Leftrightarrow y=1\)
Từ đây ta có thể thấy : \(A\ge4-1=3\)
Dấu "=" xảy ra khi \(\left(x-y\right)\cdot\left(y+1\right)=2\) và \(y=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\y=1\end{matrix}\right..\)
Bài này hồi lúc cũng không biết làm, h biết truyền lại cho bạn :D
cho a,b,c là các số thực dương. Cmr
\(\dfrac{a^4}{b^3\left(c+a\right)}+\dfrac{b^4}{c^3\left(a+b\right)}+\dfrac{c^4}{a^3\left(b+c\right)}\ge\dfrac{3}{2}\)
Lời giải:
Áp dụng BĐT Cauchy ta có:
\(\frac{a^4}{b^3(c+a)}+\frac{c+a}{4a}+\frac{1}{2}\geq 3\sqrt[3]{\frac{a^3}{8b^3}}=\frac{3a}{2b}\)
\(\frac{b^4}{c^3(a+b)}+\frac{a+b}{4b}+\frac{1}{2}\geq 3\sqrt[3]{\frac{b^3}{8c^3}}=\frac{3b}{2c}\)
\(\frac{c^4}{a^3(b+c)}+\frac{b+c}{4c}+\frac{1}{2}\geq 3\sqrt[3]{\frac{c^3}{8a^3}}=\frac{3c}{2a}\)
Cộng theo vế và rút gọn:
\(\Rightarrow \frac{a^4}{b^3(c+a)}+\frac{b^4}{c^3(a+b)}+\frac{c^4}{a^3(b+c)}+\frac{1}{4}(\frac{a}{b}+\frac{b}{c}+\frac{c}{a})+\frac{9}{4}\geq \frac{3}{2}(\frac{a}{b}+\frac{b}{c}+\frac{c}{a})\)
\(\Rightarrow \frac{a^4}{b^3(c+a)}+\frac{b^4}{c^3(a+b)}+\frac{c^4}{a^3(b+c)}\geq \frac{5}{4}(\frac{a}{b}+\frac{b}{c}+\frac{c}{a})-\frac{9}{4}\geq \frac{5}{4}.3\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}-\frac{9}{4}\)
hay \( \frac{a^4}{b^3(c+a)}+\frac{b^4}{c^3(a+b)}+\frac{c^4}{a^3(b+c)}\geq \frac{5}{4}.3-\frac{9}{4}=\frac{3}{2}\)
Ta có đpcm
Dấu bằng xảy ra khi \(a=b=c\)
Cách khác:
Áp dụng BĐT Cauchy-Schwarz:
\(\text{VT}=\frac{(\frac{a^2}{b})^2}{b(c+a)}+\frac{(\frac{b^2}{c})^2}{c(a+b)}+\frac{(\frac{c^2}{a})^2}{a(b+c)}\geq \frac{\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)^2}{b(c+a)+c(a+b)+a(b+c)}\)
Tiếp tục áp dụng BĐT Cauchy-Schwarz:
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\geq \frac{(a+b+c)^2}{b+c+a}=a+b+c\)
\(\Rightarrow \left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)^2\geq (a+b+c)^2\)
Do đó: \(\text{VT}\geq \frac{(a+b+c)^2}{2(ab+bc+ac)}\)
Theo hệ quả quen thuộc của BĐT Cauchy: \((a+b+c)^2\geq 3(ab+bc+ac)\)
Suy ra: \(\text{VT}\geq \frac{3(ab+bc+ac)}{2(ab+bc+ac)}=\frac{3}{2}\) (đpcm)
cho 3 số a,b,c dương và a+b+c=1.CMR
\(\dfrac{ab}{a^2+b^2}+\dfrac{bc}{b^2+c^2}+\dfrac{ca}{c^2+a^2}+\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{15}{4}\)
Cho a, b, c thuộc R. CM:
1, \(ab\le\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\)
2, \(\dfrac{a^3+b^3}{2}\ge\left(\dfrac{a+b}{2}\right)^3\)
3, \(a^4+b^4\ge a^3b+ab^3\)
4, \(a^4+3\ge4a\)
5, \(a^3+b^3+c^3\ge3abc\left(a,b,c>0\right)\)
6, \(a^4+b^4\le\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}\left(a,b\ne0\right)\)
7, \(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}\ge\dfrac{2}{1+ab}\left(a,b\ge1\right)\)
8, \(\left(a^5+b^5\right)\left(a+b\right)\ge\left(a^4+b^4\right)\left(a^2+b^2\right)\)
Câu 1:
Ta có: \(\left(\dfrac{a+b}{2}\right)^2\ge ab\)
\(\Leftrightarrow\dfrac{\left(a+b\right)^2}{2^2}-ab\ge0\)
\(\Leftrightarrow\dfrac{a^2+2ab+b^2-4ab}{4}\ge0\)
\(\Leftrightarrow\dfrac{a^2-2ab+b^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)
Vì \(\left(a-b\right)^2\ge0\forall a,b\)
\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)
\(\Rightarrow\left(\dfrac{a+b}{2}\right)^2\ge ab\) (1)
Ta có: \(\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)
\(\Leftrightarrow\dfrac{a^2+b^2}{2}-\dfrac{\left(a+b\right)^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{2a^2-2b^2-a^2-2ab-b^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{a^2-2ab-b^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)
Vì \(\left(a-b\right)^2\ge0\forall a,b\)
\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)
\(\Rightarrow\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\) (2)
Từ (1) và (2) \(\Rightarrow ab\le\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\)
5 , a3+b3+c3\(\ge\) 3abc
\(\Leftrightarrow\) a3+3a2b+3ab2+b3+c3-3a2b-3ab2-3abc\(\ge\) 0
\(\Leftrightarrow\) (a+b)3+c3-3ab(a+b+c) \(\ge0\)
\(\Leftrightarrow\) (a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c) \(\ge0\)
\(\Leftrightarrow\) (a+b+c)(a2+b2+c2-ab-bc-ca)\(\ge0\) (1)
ta co : a,b,c>0 \(\Rightarrow\)a+b+c>0 (2)
(a-b)2+(b-c)2+(c-a)2\(\ge0\)
<=> 2a2+2b2+2c2-2ac-2cb-2ab\(\ge0\)
<=>a2+b2+c2-ab-bc-ac\(\ge\) 0 (3)
Từ (1)(2)(3)=> pt luôn đúng