giải phương trình tìm được
\(\sqrt{x-5}=3\)
ai giải hộ với ạ
giải phương trình tìm x
\(\sqrt{x-5}=3\)
ai giải hộ vói ạ
\(\sqrt{x-5=3}\)
\(x-5=9\)
\(x-5-\left(-5\right)=9-\left(-5\right)\)
\(x=9-\left(-5\right)\)
\(x=14\)
\(\text{Cho phương trình: x^2-2(m+1)x+3m-3=0 ( x là ẩn, m là tham số)}\)
\(\text{Tìm m để phương trình có hai nghiệm x_1,x_2 phân biệt sao cho}\)
\(\sqrt{x_1-1}+\sqrt{x_2-1}=4\)
Giải hộ mình với ạ
\(x^2-2\left(m+1\right)x+3m-3=0\left(1\right)\)
\(\Delta'>0\Leftrightarrow\left(m+1\right)^2-\left(3m-3\right)=m^2-m+4>0\left(đúng\forall m\right)\)
\(đk\) \(tồn\) \(tại:\sqrt{x1-1}+\sqrt{x2-1}\)
\(\Leftrightarrow1\le x1< x2\Leftrightarrow\left\{{}\begin{matrix}\left(x1-1\right)\left(x2-1\right)\ge0\\x1+x2-2>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x1x2-\left(x1+x2\right)+1\ge0\\2\left(m+1\right)-2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3m-2-2\left(m+1\right)+1\ge0\\m>0\end{matrix}\right.\)
\(\Leftrightarrow m\ge4\)
\(\Rightarrow\sqrt{x1-1}+\sqrt{x2-1}=4\Leftrightarrow x1+x2-2+2\sqrt{\left(x1-1\right)\left(x2-1\right)}=16\)
\(\Leftrightarrow2\left(m+1\right)+2\sqrt{x1.x2-\left(x1+x2\right)+1}=18\)
\(\Leftrightarrow\left(m+1\right)+\sqrt{3m-3-2\left(m+1\right)+1}=9\)
\(\Leftrightarrow m-4+\sqrt{m-4}=4\)
\(đặt:\sqrt{m-4}=t\ge0\Rightarrow t^2+t=4\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{-1+\sqrt{17}}{21}\left(tm\right)\\t=\dfrac{-1-\sqrt{17}}{21}\left(ktm\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{m-4}=\dfrac{-1+\sqrt{17}}{21}\Leftrightarrow m=....\)
\(\)
Tính tổng các nghiệm của phương trình sau : \(x^2-4x-3=\sqrt{x-5}\) ta được kết quả là :
A.\(\dfrac{3+\sqrt{29}}{2}\) B.\(\dfrac{-7-\sqrt{29}}{2}\) C.\(8\) D.\(\dfrac{5-\sqrt{29}}{2}\)
mng giải ra hộ mik ạ. mik cảm ơn
Lời giải:
ĐKXĐ: $x\geq 5$
$2x^2-8x-6=2\sqrt{x-5}\leq (x-5)+1$ theo BĐT Cô-si
$\Leftrightarrow 2x^2-9x-2\leq 0$
$\Leftrightarrow 2x(x-5)+(x-2)\leq 0$
Điều này vô lý do $2x(x-5)\geq 0; x-2\geq 3>0$ với mọi $x\geq 5$
Vậy pt vô nghiệm nên không có đáp án nào đúng.
Tìm m để bất phương trình 2x²-2(m-3)x+m+3=0 Có hai nghiệm trái dấu phân biệt Ai giải hộ mình với ạ mình đang cần gấp lắm
Pt có 2 nghiệm trái dấu khi:
\(ac< 0\Leftrightarrow2\left(m+3\right)< 0\)
\(\Rightarrow m< -3\)
a) Tìm điều kiện xác định của biểu thức: \(\sqrt{x+2}+\sqrt{5-x}\)
b) Giải phương trình: \(\sqrt{4x^2-16x+16}=6\)
AI GIẢI NHANH GIÙM VỚI Ạ !!!
may tinh toi khong ra ket qua cho ban duoc
mọi người làm giúp mình với mình cần gấp !!!!!!!!!!!!! like nhiệt tình ai giải giúp ạ
giải phương trình:
\(\sqrt{x^2+12}+5=3x+\sqrt{x^2+5}\)
phương trình \(x^2-3x+1=\frac{-\sqrt{3}}{3}\sqrt{x^4+x^2+1}\) hộ mình vs ạ
giải hộ mình vs
Đúng làm trẻ trâu , ăn nói mất lịch sự
Giải phương trình : \(5\sqrt{\sqrt{x}+1}=2\left(\sqrt[3]{x}+2\right)\)
Ai giải được mình tặng 3 tick
\(\Leftrightarrow-2\sqrt[3]{x}+5\sqrt{\sqrt{x}+1}-4=0\)
\(\Rightarrow x-2380\sqrt{37}-14477=0\)
\(\Rightarrow x+2380\sqrt{37}-14477=0\)
\(\Rightarrow x=2380\sqrt{37}+14477\)
thay 1 vào tử, thấy:
căn(5-x) = căn 4= 2;
căn bậc 3(x^2+7)=căn bậc 3 của 8=2
=> thêm bớt 2.
Bài làm:
lim {[căn(5-x)-2]-[căn bậc 3(x^2-7)-2]}/(x^2-1)
tương đương: lim [căn(5-x)-2]/(x^2-1) - lim [căn bậc 3(x^2-7)-2]/(x^2-1)
Tính lim từng số hạng như thường.
GIẢI PHƯƠNG TRÌNH
\(\dfrac{5}{2}\sqrt{4x-12}+\sqrt{9x-27}=7+\sqrt{x-3}\)
giúp em với ạ TT , em cảm ơn :33
ĐKXĐ: \(x\ge3\)
\(pt\Leftrightarrow5\sqrt{x-3}+3\sqrt{x-3}-\sqrt{x-3}=7\)
\(\Leftrightarrow7\sqrt{x-3}=7\Leftrightarrow\sqrt{x-3}=1\)
\(\Leftrightarrow x-3=1\Leftrightarrow x=4\left(tm\right)\)