x+y+z+a+b+c biện luận x y z khác o với abc =o
C/m neu a(y+z)=b(z+x)=c(x+y) [a khác b khác c và khác 0] thì
y-z/a(b-c)=z-x/b(c-a)=a)=x-y/c(a-b)
Cho y(n+p)=z(p+m) trong đó x,y,z là 3 số khác nhau và khác 0 CMR: (m-n)/x(y-z)=(n-p)/y(z-x)=(p-m)/z(x-y).
giúp suli với các bn nekkkkkkkkkkkkk
Mn giúp mình với:
Cho 3 số x; y; z là 3 số khác nhau không thỏa mãn điều kiện:
x + z - x/ x = z + x - y/ y = x + y - z/ z
Hãy tính giá trị biểu thức: A=(1 + x/y) × (1 + y/z) × (1+ z/x)
Đề bài : Cho 3 số x,y,z thoả mãn điều kiện \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\). Tính giá trị biểu thức \(A=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
GIẢI :
Ta có : \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\Leftrightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)
\(\Leftrightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
Nếu x+y+z=0 \(\Rightarrow A=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=-1\)Nếu x+y+z khác 0 => \(x=y=z\)Thay vào A được : \(A=\left(1+1\right)\cdot\left(1+1\right).\left(1+1\right)=8\)
Chứng minh rằng nếu \(\left(a^2+b^2+b^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)với x,y,z khác 0 thì \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
help
Chi tham khao tai day:
Câu hỏi của Vương Nguyễn Thanh Triều - Toán lớp 8 - Học toán với OnlineMath
Chứng minh rằng: Nếu a(y + z) = b(z + x) = c(x + y), trong đó a; b; c là các số khác nhau và khác 0 thì:
\(\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)
Bài làm:
Vì a,b,c khác 0 nên:
Ta có: \(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\)
\(\Leftrightarrow\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}\) (1) (chia cả 3 vế cho abc)
Áp dụng t/c dãy tỉ số bằng nhau ta được:
\(\left(1\right)=\frac{x+y-z-x}{ab-ca}=\frac{y+z-x-y}{bc-ab}=\frac{z+x-y-z}{ca-bc}\)
\(=\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)
=> đpcm
Bài làm:
Vì a,b,c khác 0 nên:
Ta có: a(y+z)=b(z+x)=c(x+y)�(�+�)=�(�+�)=�(�+�)
⇔y+zbc=z+xca=x+yab⇔�+���=�+���=�+��� (1) (chia cả 3 vế cho abc)
Áp dụng t/c dãy tỉ số bằng nhau ta được:
(1)=x+y−z−xab−ca=y+z−x−ybc−ab=z+x−y−zca−bc(1)=�+�−�−���−��=�+�−�−���−��=�+�−�−���−��
=y−za(b−c)=z−xb(c−a)=x−yc(a−b)=�−��(�−�)=�−��(�−�)=�−��(�−�)
=> đpcm
Tìm tỉ số x/y biết :
a) 2x - y / x + y = 2/3 ( x khác -y )
b) y/z = x + y / x - z = x/y ( x khác z, y, z khác 0 )
( Dấu / là phân số )
a/Biết y tỉ lệ thuận với x theo hệ số tỉ lệ k1 và x tỉ lệ thuận với z theo hệ số tỉ lệ k2 (k1,k2 khác 0). Hãy chứng tỏ rằng y tỉ lệ thuận với z và tìm hệ số tỉ lệ.
b/Biết x tỉ lệ thuận với y theo hệ số tỉ lệ bằng 0,4 và y tỉ lệ thuận với z theo hệ số tỉ lệ 6.
Tìm x,biết z bằng 5;z bằng -1/3;z bằng 3/5.
Giups mìnk với,đg cần gấp!!!!
a: \(y=k_1\cdot x\)
\(x=k_2\cdot z\)
\(\Leftrightarrow k_2\cdot z=\dfrac{y}{k_1}\)
\(\Leftrightarrow y=z\cdot k_1\cdot k_2\)
Vậy: Hệ số tỉ lệ là \(k=k_1\cdot k_2\)
b: Vì x tỉ lệ thuận với y theo hệ số tỉ lệ 0,4
và y tỉ lệ thuận với z theo hệ số tỉ lệ 6
nên x tỉ lệ thuận với z theo hệ số tỉ lệ 2,4
=>x=2,4z
Khi z=5 thì x=12
Khi z=-1/3 thì x=-0,8
Khi z=3/5 thì x=1,44
giải và biện luận phương trình
\(x^2+x+m=0\)
Giúp với
\(\Delta =1^2-4.1.m=1-4m\)
Pt có nghiệm kép
\(\to \Delta=0\\\to 1-4m=0\\\leftrightarrow m=\dfrac{1}{4}\)
Pt có 2 nghiệm phân biệt
\(\to \Delta>0\\\to 1-4m>0\\\leftrightarrow m<\dfrac{1}{4}\)
Pt vô nghiệm
\(\to \Delta<0\\\to 1-4m<0\\\leftrightarrow m>\dfrac{1}{4}\)
Cho ΔABC nhọn nội tiếp (O;R). Gọi x,y,z là khoảng cách từ O đến các cạnh BC = a; CA = b; AB = c của ΔABC. CM: \(\sqrt{x}+\sqrt{y}+\sqrt{z}\le3\sqrt{\frac{R}{2}}\)
Bài này dễ thôi em :)
Ta có: \(\sin C_1=\frac{x}{R};\sin C_2=\frac{y}{R};\sin B_1=\frac{x}{R};\sin B_2=\frac{z}{R};\sin A_1=\frac{y}{R};\sin A_2=\frac{z}{R}\)
khi đó \(\frac{2\left(x+y+z\right)}{R}=sinA_1+sinA_2+sinB_1+sinB_2+sinC_1+siCA_2\)
Xét \(f\left(a\right)=sina\rightarrow f''\left(a\right)=-sina< 0\) là hãm lõm nên ta áp dụng BDT Jensen:
\(sinA_1+sinA_2+sinB_1+sinB_2+sinC_1+siCA_2\le6sin\left(\frac{A+B+C}{6}\right)=6sin\left(\frac{180}{6}\right)=3\)
\(\Rightarrow\frac{2\left(x+y+z\right)}{R}\le3\Leftrightarrow x+y+z\le\frac{3R}{2}\)
Lại theo BĐT C-S: \(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\sqrt{3\cdot\left(x+y+z\right)}=\sqrt{3\cdot\frac{3R}{2}}=3\sqrt{\frac{R}{2}}\)