cho 3 số dương a, b, c thỏa mãn a+ b+ c =1. Cmr 1/a + 1/b +1/c > hoặc =9
cho 3 số dương a,b,c thỏa mãn a+b+c=1. cmr 1/a+1/b+1/c>=9
đoạn trên nhầm mà là 1/a+1/b+1/c=(a+b+c)(1/a+1/b+1/c)vì a+b+c=1
Vì a+b+c=1=>(a+b+c)=(1/a+1/b+1/c)*(a+b+c)
=1+1+1+a/b+b/a+a/c+c/a+b/c+c/b
Áp dung cô si cho a/b+b/a>hoac bang 2
Tg tự a/c+c/a:b/c+c/b cũng vậy
=>(a+b+c)(1/a+1/b+1/c)>hoac bang9
p =.1/a+1/b+1/c>hoac bang9
Dùng bđt Bunhiacopski ta có :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{1}=9\)
Cho a,b,c dương thỏa mãn a+b+c=3. CMR: abc(1+a^2)(1+b^2)(1+c^2) nhỏ hơn hoặc bằng 8
Để chứng minh rằng biểu thức abc(1+a^2)(1+b^2)(1+c^2) nhỏ hơn hoặc bằng 8 khi a, b, c là các số dương và a + b + c = 3, chúng ta có thể sử dụng bất đẳng thức AM-GM (bất đẳng thức trung bình cộng - trung bình nhân).
Áp dụng bất đẳng thức AM-GM cho a, b, c ta có: (a + b + c)/3 >= (abc)^(1/3)
Vì a + b + c = 3, ta có: 3/3 >= (abc)^(1/3) 1 >= (abc)^(1/3) 1^3 >= abc 1 >= abc
Tiếp theo, chúng ta cần chứng minh rằng (1 + a^2)(1 + b^2)(1 + c^2) <= 8.
Áp dụng bất đẳng thức AM-GM cho (1 + a^2), (1 + b^2), (1 + c^2) ta có: (1 + a^2 + 1 + b^2 + 1 + c^2)/3 >= ((1 + a^2)(1 + b^2)(1 + c^2))^(1/3)
Vì a^2 + b^2 + c^2 >= 3 (bằng với bất đẳng thức Tchebyshev), ta có: (3 + a^2 + b^2 + c^2)/3 >= ((1 + a^2)(1 + b^2)(1 + c^2))^(1/3) (3 + a^2 + b^2 + c^2)/3 >= (3 + a^2 + b^2 + c^2)/3 1 >= ((1 + a^2)(1 + b^2)(1 + c^2))^(1/3) 1^3 >= (1 + a^2)(1 + b^2)(1 + c^2) 1 >= (1 + a^2)(1 + b^2)(1 + c^2)
Từ hai bất đẳng thức trên, ta có: abc(1 + a^2)(1 + b^2)(1 + c^2) <= 1 * 1 = 1
Do đó, khi a, b, c là các số dương và a + b + c = 3, ta có abc(1 + a^2)(1 + b^2)(1 + c^2) <= 1, và vì 1 nhỏ hơn hoặc bằng 8, nên ta có: abc(1 + a^2)(1 + b^2)(1 + c^2) <= 8.
Vậy, chúng ta đã chứng minh được rằng biểu thức abc(1 + a^2)(1 + b^2)(1 + c^2) nhỏ hơn hoặc bằng 8 khi a, b, c là các số dương và a + b + c = 3.
Bất đẳng thức Bunhiacopxki
B1: Cho a,b,c thỏa mãn: a+b+c=1. CMR: \(a^2+b^2+c^2\ge\dfrac{1}{3}\)
B2: Cho a,b,c dương thỏa mãn: \(a^2+4b^2+9c^2=2015\). CMR: \(a+b+c\le\dfrac{\sqrt{14}}{6}\)
B3: Cho a,b dương thỏa mãn: \(a^2+b^2=1\).CMR: \(a\sqrt{1+a}+b\sqrt{1+b}\le\sqrt{2+\sqrt{2}}\)
Bài 1:
Áp dụng BĐT Bunhiacopxky ta có:
$(a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2$
$\Leftrightarrow 3(a^2+b^2+c^2)\geq 1$
$\Leftrightarrow a^2+b^2+c^2\geq \frac{1}{3}$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$
Bài 2:
Áp dụng BĐT Bunhiacopxky:
$(a^2+4b^2+9c^2)(1+\frac{1}{4}+\frac{1}{9})\geq (a+b+c)^2$
$\Leftrightarrow 2015.\frac{49}{36}\geq (a+b+c)^2$
$\Leftrightarrow \frac{98735}{36}\geq (a+b+c)^2$
$\Rightarrow a+b+c\leq \frac{7\sqrt{2015}}{6}$ chứ không phải $\frac{\sqrt{14}}{6}$ :''>>
Bài 3:
Áp dụng BĐT Bunhiacopxky:
$2=(a^2+b^2)(1+1)\geq (a+b)^2\Rightarrow a+b\leq \sqrt{2}$
$(a\sqrt{1+a}+b\sqrt{1+b})^2\leq (a^2+b^2)(1+a+1+b)$
$=2+a+b\leq 2+\sqrt{2}$
$\Rightarrow a\sqrt{1+a}+b\sqrt{1+b}\leq \sqrt{2+\sqrt{2}}$
Ta có đpcm
Dấu "=" xảy ra khi $a=b=\frac{1}{\sqrt{2}}$
Cho a,b,c là các số thỏa mãn /b-c/ < hoặc =1 ; /c/ < hoặc = 2; /a-1/ < hoặc = 3. CMR /ac-b/< hoặc = 7
Cho a,b,c là các số thỏa mãn /b-c/ < hoặc =1 ; /c/ < hoặc = 2; /a-1/ < hoặc = 3. CMR /ac-b/< hoặc = 7
Cho a,b,c là các số thỏa mãn /b-c/ < hoặc =1 ; /c/ < hoặc = 2; /a-1/ < hoặc = 3. CMR /ac-b/< hoặc = 7
Cho các số dương a, b, c thỏa mãn: a+b+c=1. CMR: \(4.\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+9\)
a) CHO 3 SỐ DƯƠNG a , b , c THỎA MÃN abc=1 . CMR: (a+b)(b+c)(c+a)>= 2(1+a+b+c)
b) CHO m,n LÀ 2 SỐ NGUYÊN DƯƠNG THỎA MÃN: m^2+n^2+2018 CHIA HẾT CHO mn. CMR m,n LÀ 2 SỐ LẺ VÀ NGUYÊN TỐ CÙNG NHAU
m.n/(m^2+n^2 ) và m.n/2018
- Đặt (m,n)=d => m= da;n=db ; (a,b)=1
=> d^2(a^2+b^2)/(d^2(ab)) = (a^2+b^2)/(ab) => b/a ; a/b => a=b=> m=n=> ( 2n^2+2018)/n^2 =2 + 2018/n^2 => n^2/2018
=> m=n=1 ; lẻ và nguyên tố cùng nhau. vì d=1
Vẽ SH _I_ (ABCD) => H là trung điểm AD => CD _I_ (SAD)
Vẽ HK _I_ SD ( K thuộc SD) => CD _I_ HK => HK _I_ (SCD)
Vẽ AE _I_ SD ( E thuộc SD).
Ta có S(ABCD) = 2a² => SH = 3V(S.ABCD)/S(ABCD) = 3(4a³/3)/(2a²) = 2a
1/HK² = 1/SH² + 1/DH² = 1/4a² + 1/(a²/2) = 9/4a² => HK = 2a/3
Do AB//CD => AB//(SCD) => khoảng cách từ B đến (SCD) = khoảng cách từ A đến (SCD) = AE = 2HK = 4a/3
Cho a;b;c là các số thực dương thỏa mãn a+b+c=a*b*c .Cmr a+b+c >hoặc bằng (1/a+1/b+1/c) . Giúp mình giải bài này với nhanh lên đâỳ có đầy đủ cách làm