\(B=\dfrac{\sqrt{x}}{\sqrt{x}-2}\) so sánh B với \(\sqrt{B}\)
B= 1:(\(\dfrac{x+2}{x\sqrt{x}-1} + \dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{x-1}\))
a) Rút gọn B
b) So sánh B với 3
a) ĐKXĐ: \(x>0,x\ne1\)
\(B=1:\dfrac{\left(x+2\right)\left(\sqrt{x}+1\right)+\left(\sqrt{x}+1\right)\left(x-1\right)-\left(\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x\sqrt{x}-\sqrt{x}}\)
\(=\dfrac{\left(x-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(x-1\right)}=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)
b) \(B=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}=\sqrt{x}+1+\dfrac{1}{\sqrt{x}}\)
Áp dụng BĐT Cauchy cho 2 só dương:
\(\sqrt{x}+\dfrac{1}{\sqrt{x}}\ge2\sqrt{\dfrac{\sqrt{x}.1}{\sqrt{x}}}=2\)
\(\Rightarrow B=1+\sqrt{x}+\dfrac{1}{\sqrt{x}}\ge1+2=3\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\)
Ta có: A = \(\dfrac{4\sqrt{x}}{\sqrt{x}-2}\) và B = \(\dfrac{4\left(\sqrt{x}+2\right)}{\sqrt{x}-2}\) với \(x\ge0;x\ne4\)
Cho \(M=\dfrac{A}{B}\). So sánh \(M\) và \(\sqrt{M}\)
\(A=\dfrac{-3\sqrt{x}+1}{\sqrt{x}-3}\) và \(B=\dfrac{3\sqrt{x}-2}{x-5\sqrt{x}+6}-\dfrac{1}{\sqrt{x}-2}+\dfrac{3\sqrt{x}-2}{3-\sqrt{x}}\) \(\left(x\ge0;x\ne4;x\ne9\right)\). Với \(x>9\), so sánh \(\dfrac{A}{B}\) và 1.
Cho các biểu thức:
A = \(\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\) và B = \(\dfrac{\sqrt{x}}{\sqrt{x}+x}\) với x > 0
a) So sánh B và 1
b) Đặt P = A : B. Tìm các giá trị của x thỏa mãn \(P\sqrt{x}+\left(2\sqrt{x}-1\right)\sqrt{x}=3x-2\sqrt{x-4}+3\)
a: \(B=\dfrac{1}{\sqrt{x}+1}\)
\(B-1=\dfrac{\sqrt{x}+1-1}{\sqrt{x}+1}=\dfrac{\sqrt{x}}{\sqrt{x}+1}>=0\)
=>B>=1
b: \(P=\dfrac{\sqrt{x}+1+x}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)
\(P\cdot\sqrt{x}+2x-\sqrt{x}=3x-2\sqrt{x-4}+3\)
=>\(x+\sqrt{x}+1+2x-\sqrt{x}=3x+3-2\sqrt{x-4}\)
=>\(-2\sqrt{x-4}+3=1\)
=>x-4=1
=>x=5
\(A=\dfrac{x+\sqrt{x}+1}{\sqrt{x}-4}\) và \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{5\sqrt{x}-8}{2\sqrt{x}-x}\)
1. Rút gọn B
2. Cho P=A.B. So sánh P với 2
1: \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{5\sqrt{x}-8}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-\sqrt{x}-5\sqrt{x}+8}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-4\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}-4}{\sqrt{x}}\)
2: \(P=A\cdot B=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)
\(\Leftrightarrow P-2=\dfrac{x-\sqrt{x}+1}{\sqrt{x}}>0\)
=>P>2
Cho A= \(\dfrac{x-\sqrt{x}+1}{\sqrt{x}-1}\)và B= \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2}{\sqrt{x}+3}-\dfrac{9\sqrt{x}-3}{x+\sqrt{x}-6}\)
a) rút gọn B
b) Cho x>0. so sánh A với 3
\(a,B=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2}{\sqrt{x}+3}-\dfrac{9\sqrt{x}-3}{x+\sqrt{x}-6}\left(x>0;x\ne6\right)\\ =\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2}{\sqrt{x}+3}-\dfrac{9\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\dfrac{2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}-\dfrac{9\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{x+3\sqrt{x}+\sqrt{x}+3+2\sqrt{x}-4-9\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{x-3\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\\)
\(=\dfrac{x-\sqrt{x}-2\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{\sqrt{x}-1}{\sqrt{x}+3}\)
`b,` Tớ tính mãi ko ra, xl cậu nha=')
B1: Cho
\(M=\dfrac{x-2}{x+2\sqrt{x}}-\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\) với x>0
a, Rút gọn M
b, so sánh M với 1
a) Ta có: \(M=\dfrac{x-2}{x+2\sqrt{x}}-\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-2-\sqrt{x}-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
b) Ta có: M-1
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}}-\dfrac{\sqrt{x}}{\sqrt{x}}\)
\(=\dfrac{-2}{\sqrt{x}}< 0\forall x\) thỏa mãn ĐKXĐ
hay M<1
cho biểu thức \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\dfrac{\sqrt{x}}{x-\sqrt{x}}\)
a, Rút gon P
b, Tính giá trị của P khi x=17-12\(\sqrt{2}\)
c,so sánh P với \(\sqrt{P}\)
Giúp mình làm câu b, với câu c, nhá . Mơn trước :3
Cho các biểu thức \(A=\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\); \(B=\dfrac{\sqrt{x}}{x+\sqrt{x}}\); \(P=\dfrac{A}{B}\); \(x>0\)
a) Rút gọn biểu thức P và tính giá trị của P khi x = 4.
b) Tìm các giá trị của x để \(A\le3B\)
c) So sánh B với 1
d) Tìm x thỏa mãn: \(P\sqrt{x}+\left(2\sqrt{5}-1\right)\sqrt{x}=3x-2\sqrt{x-4}+3\)
e) Tìm giá trị nhỏ nhất của P.
f) Tìm các giá trị nguyên của x để P nhận giá trị là số nguyên.