5x + 15 - 2x(3 + x)=0
Tìm x biết:
a. 5x² - 25x
b. (X+3)² - 5x - 15 =0
c. 2x⁵ -4x³+2x =0
Giúp mik với
b) \(\left(x+3\right)^2-5x-15=0\\ \Leftrightarrow\left(x+3\right)^2-5\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x+3-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là : \(S=\left\{-3;2\right\}\)
c) \(2x^5-4x^3+2x=0\\ \Leftrightarrow2x\left(x^4-2x^2+1\right)=0\\ \Leftrightarrow2x\left(x^2-1\right)^2=0\\ \Rightarrow\left[{}\begin{matrix}2x=0\\\left(x^2-1\right)^2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
Vậy tập nghiệm của pt là : \(S=\left\{0;1;-1\right\}\)
Câu 1: Giải phương trình
a) 2x + 6 = 0
b) 4x + 20 = 0
c) 2(x - 1) = 5x - 7
d) 2x - 3 = 0
e) 3x - 1 = x + 3
f) 15 - 7x = 9 3x
g) x - 3 = 18
h) 2x + 1 = 15 - 5x
Câu 1: Giải phương trình
a) 2x + 6 = 0
b) 4x + 20 = 0
c) 2(x - 1) = 5x - 7
d) 2x - 3 = 0
e) 3x - 1 = x + 3
f) 15 - 7x = 9 - 3x
g) x - 3 = 18
h) 2x + 1 = 15 - 5x
a)
$2x+6=0$
$2x=-6$
$x=-3$
b) $4x+20=0$
$4x=-20$
$x=-5$
c)
$2(x-1)=5x-7$
$2x-2=5x-7$
$3x=5$
$x=\frac{5}{3}$
d) $2x-3=0$
$2x=3$
$x=\frac{3}{2}$
e)
$3x-1=x+3$
$2x=4$
$x=2$
f)
$15-7x=9-3x$
$6=4x$
$x=\frac{3}{2}$
g) $x-3=18$
$x=18+3=21$
h)
$2x+1=15-5x$
$7x=14$
$x=2$
a) (5x-15)(4+6x)=0
b) (2x-1)(5x-6)(1/2x-3/4)=0
c) (3-4x)(2x-3/4-x-4/3)=0
d) (2/3x-1/6)[5(x-1)-3/2-(2-3)(x-1)/3]=0
a) Ta có: \(\left(5x-15\right)\left(4+6x\right)=0\)
\(\Leftrightarrow5\left(x-3\right)\cdot2\cdot\left(2+3x\right)=0\)
\(\Leftrightarrow10\left(x-3\right)\left(2+3x\right)=0\)
Vì 10\(\ne\)0 nên
\(\left[{}\begin{matrix}x-3=0\\2+3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{-2}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{3;\frac{-2}{3}\right\}\)
b) Ta có: \(\left(2x-1\right)\left(5x-6\right)\left(\frac{1}{2}x-\frac{3}{4}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\5x-6=0\\\frac{1}{2}x-\frac{3}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=1\\5x=6\\\frac{1}{2}x=\frac{3}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{6}{5}\\x=\frac{3}{4}:\frac{1}{2}=\frac{3}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{1}{2};\frac{6}{5};\frac{3}{2}\right\}\)
c) Ta có: \(\left(3-4x\right)\left(2x-\frac{3}{4}-x-\frac{4}{3}\right)=0\)
\(\Leftrightarrow\left(3-4x\right)\left(x-\frac{25}{12}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3-4x=0\\x-\frac{25}{12}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=3\\x=\frac{25}{12}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{4}\\x=\frac{25}{12}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{3}{4};\frac{25}{12}\right\}\)
d) Ta có: \(\left(\frac{2}{3}x-\frac{1}{6}\right)\left[5\left(x-1\right)-\frac{3}{2}-\frac{\left(2-3\right)\left(x-1\right)}{3}\right]=0\)
\(\Leftrightarrow\left(\frac{2}{3}x-\frac{1}{6}\right)\left[5x-5-\frac{3}{2}-\frac{-1\left(x-1\right)}{3}\right]=0\)
\(\Leftrightarrow\left(\frac{2}{3}x-\frac{1}{6}\right)\left(5x-5-\frac{3}{2}-\frac{1-x}{3}\right)=0\)
\(\Leftrightarrow\left(\frac{2}{3}x-\frac{1}{6}\right)\left(5x-\frac{13}{2}-\frac{1}{3}+\frac{x}{3}\right)=0\)
\(\Leftrightarrow\left(\frac{2}{3}x-\frac{1}{6}\right)\left(\frac{15x}{3}-\frac{41}{6}+\frac{x}{3}\right)=0\)
\(\Leftrightarrow\left(\frac{2}{3}x-\frac{1}{6}\right)\left(\frac{16x}{3}-\frac{41}{6}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{2}{3}x-\frac{1}{6}=0\\\frac{16x}{3}-\frac{41}{6}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{2}{3}x=\frac{1}{6}\\\frac{16}{3}\cdot x=\frac{41}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{6}:\frac{2}{3}\\x=\frac{41}{6}:\frac{16}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{4}\\x=\frac{41}{32}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{1}{4};\frac{41}{32}\right\}\)
\(a.\left(5x-15\right)\left(4+6x\right)=0\\ \left[{}\begin{matrix}5x-15=0\\4+6x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{-2}{3}\end{matrix}\right.\)
\(b.\left(2x-1\right)\left(5x-6\right)\left(\frac{1}{2}x-\frac{3}{4}=0\right)\\ \left[{}\begin{matrix}2x-1=0\\5x-6=0\\\frac{1}{2}x-\frac{3}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{6}{5}\\x=-\frac{3}{2}\end{matrix}\right.\)
c.
\(\left(3-4x\right)\left(2x-\frac{3}{4}-x-\frac{4}{3}\right)=0\\ \Leftrightarrow\left(3-4x\right)\left(x-\frac{25}{12}\right)=0\\ \left[{}\begin{matrix}3-4x=0\\x-\frac{25}{12}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{4}\\x=\frac{25}{2}\end{matrix}\right.\)
tìm x biết
a x^2 (2x+15)+4(2x+15)=0
b 5x(x-2)-3(x-2)=0
c 2(x+3)-x^2-3x=0
a
\(x^2\left(2x+15\right)+4\left(2x+15\right)=0\\ \Leftrightarrow\left(2x+15\right)\left(x^2+4\right)=0\\ \Leftrightarrow2x+15=0\left(x^2+4>0\forall x\right)\\ \Leftrightarrow2x=-15\\ \Leftrightarrow x=-\dfrac{15}{2}\)
b
\(5x\left(x-2\right)-3\left(x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(5x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\5x-3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0+2=2\\x=\dfrac{0+3}{5}=\dfrac{3}{5}\end{matrix}\right.\)
c
\(2\left(x+3\right)-x^2-3x=0\\ \Leftrightarrow2\left(x+3\right)-\left(x^2+3x\right)=0\\ \Leftrightarrow2\left(x+3\right)-x\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(2-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\2-x=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0-3=-3\\x=2-0=2\end{matrix}\right.\)
a: =>(2x+15)(x^2+4)=0
=>2x+15=0
=>2x=-15
=>x=-15/2
b; =>(x-2)(5x-3)=0
=>x=2 hoặc x=3/5
c: =>(x+3)(2-x)=0
=>x=2 hoặc x=-3
1)2x-8x2=0
2)x-x2=0
3)7x=5x2
4)3x2=x
5) (2x-5)(x+9)+8-6x=0
6) (x+3)(5x-15)+2x-6=0
\(2x-8x^2=0\Rightarrow2x\left(1-4x\right)=0\Rightarrow\orbr{\begin{cases}2x=0\\1-4x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{4}\end{cases}}}\)
\(x-x^2=0\Rightarrow x\left(1-x\right)=0\Rightarrow\orbr{\begin{cases}x=0\\1-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
Cn lại lm tương tự nha e!
=.= hok tốt!!
2x^2(x-3)+5x-15=0
PT<=> (2x2+5)(x-3)=0
<=> x=3
\(2x^2\left(x-3\right)+5x-15=0\)
\(\Leftrightarrow2x^3-6x^2+5x-15=0\)
\(\Leftrightarrow\left(2x^2+5\right)\left(x-3\right)=0\)
TH1 : \(2x^2+5=0\Leftrightarrow2x^2=-5\left(voli\right)\)
TH2 : \(x-3=0\Leftrightarrow x=3\left(tm\right)\)
Vậy phương trình có nghiệm là x = 3
Giải các phương trình sau x(x+5)+2x+10=0. ; 3x(x-3)-5x+15=0
`x(x+5)+2x+10=0`
`<=>x(x+5)+2(x+5)=0`
`<=>(x+5)(x+2)=0`
\(< =>\left[{}\begin{matrix}x+5=0\\x+2=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=-5\\x=-2\end{matrix}\right.\)
`3x(x-3)-5x+15=0`
`<=>3x(x-3)-5(x-3)=0`
`<=>(x-3)(3x-5)=0`
\(< =>\left[{}\begin{matrix}x-3=0\\3x-5=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=3\\x=\dfrac{5}{3}\end{matrix}\right.\)
a.3x-6=0
b.(x+1)(2x+4)=0
c.5x+3=2x+15
\(a,3x-6=0\\ \Leftrightarrow x=2\\ b,\left(x+1\right)\left(2x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x+4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\\ c,5x+3=2x+15\\ \Leftrightarrow5x-2x=15-3\\ \Leftrightarrow3x=12\\ \Leftrightarrow x=4\)
\(a.3x-6=0 \) \(\Leftrightarrow 3x=6\) \(\Leftrightarrow x=2\)
\(b.(x+1)(2x+4)=0 \)
\(x+1=0\) Hay \(2x+4=0\)
\(x=-1\) Hay \(x=-2\)
\(c.5x+3=2x+15\)
\(\Leftrightarrow 3x=12\)
\(\Leftrightarrow x=4\)