Tìm GTNN của \(x\)-\(\sqrt{x-2008}\)
Tìm GTNN của \(x+\sqrt{x-2008}+\frac{1}{4}\)( GTNN là số nguyên)
Đặt \(t=\sqrt{x-2008},t\ge0\) . Vậy thì \(x=t^2+2008\)
Từ đó ta đưa bài toán về tìm giá trị nhỏ nhất của \(t^2+t+2008+\frac{1}{4}\)
Tới đây bạn có thể tự làm được :)
tìm GTNN của biểu thức \(x-\sqrt{x-2008}+\frac{1}{4}\)
Đặt \(t=\sqrt{x-2008},t\ge0\) \(\Rightarrow x=t^2+2008\) thay vào BT :
\(t^2+2008-t+\frac{1}{4}=\left(t-\frac{1}{2}\right)^2+2008\ge2008\)
Đẳng thức xảy ra khi t = 1/2 <=> x = 1/4
Vậy BT đạt giá trị nhỏ nhất bằng 2008 khi x = 1/4
đẳng thức xảy ra khi t = 1/2 <=> x = 8033/4
cái này mới đúng nhé!
\(x-\sqrt{x-2008}+\frac{1}{4}=\left(\left(x-2008\right)-\frac{2\sqrt{x-2008}}{2}+\frac{1}{4}\right)+2008\)
\(=\left(\sqrt{x-2008}-\frac{1}{2}\right)^2+2008\ge2008\)
Vậy GTNN là 2008
Tìm GTNN của biểu thức : \(P=\frac{2007x+2008\sqrt{1-x^2}+2009}{\sqrt{1-x^2}}\)
Tìm GTNN của A=|x-2008|+|x-2009|+|y-2010|+|x-2011|+2008
Bỏ dấu giá trị tuyệt đối:
x \(\le\) 2008 | 2008 < x < 2009 | 2009 \(\le\) x < 2010 | 2010\(\le\)x < 2011 | x \(\ge\) 2011 | |
|x- 2008| | 2008-x | x-2008 | x-2008 | x-2008 | x-2008 |
|x-2009| | 2009-x | 2009-x | x-2009 | x-2009 | x-2009 |
|x-2010| | 2010-x | 2010 - x | 2010 - x | x - 2010 | x - 2010 |
|x-2011| | 2011 - x | 2011 - x | 2011 - x | 2011 - x | x - 2001 |
=>
+) Nếu x \(\le\) 2008 => A = 2008 - x + 2009 - x + 2010 - x + 2011 - x + 2008 = 10 046 - 4x \(\ge\) 10 046 - 4.2008 = 2014
+) Nếu 2008 < x < 2009 => A = x - 2008 + 2009 - x + 2010 - x + 2011 - x + 2008 = 6030 - 2x > 6030 - 2.2009 = 2012
+) Nếu 2009 \(\le\) x < 2010 => A = x - 2008 + x - 2009 + 2010 - x + 2011 - x + 2008 = 2012
+) Nếu 2010 \(\le\) x < 2011 => A = x - 2008 + x - 2009 + x - 2010 + 2011 - x + 2008 = 2x - 2008 \(\ge\) 2.2010 - 2008 = 2012
+) Nếu x \(\ge\) 2011 => A = x - 2008 + x - 2009 + x - 2010 + x - 2011 + 2008 = 4x - 6030 \(\ge\) 4.2011 - 6030 = 2014
Từ các trường hợp trên => A nhỏ nhất bằng 2012 khi x = 2009 ; hoặc x = 2010
Tìm GTNN của biểu thức ( tìm cả x ):
G = | x - 2008 | + | x - 8 |
G = |\(x\) - 2008| + |\(x\) - 8|
Vì |\(x-8\)| = |8 - \(x\)|
⇒ G = |\(x\) - 2008| + |\(x\) - 8| = |\(x\) - 2008| + |8 - \(x\)|
G = |\(x\) - 2008| + |8-\(x\)| \(\ge\) |\(x-2008\) + 8 - \(x\)| = 2000
Dấu bằng xảy ra ⇔ (\(x\) - 2008).(8 - \(x\)) ≥ 0
Lập bảng ta có:
\(x\) | 8 2008 |
8 - \(x\) | + 0 - - |
\(x\) - 2008 | - - 0 + |
(\(x\) - 8).(\(x\) - 2008) | - 0 + 0 - |
Theo bảng trên ta có: Gmin = 2000 ⇔ 8 ≤ \(x\) ≤ 2008
Lời giải:
Trước tiên ta cm BĐT sau:
$|a|+|b|\geq |a+b|(*)$
------------------------
Thật vậy:
$(|a|+|b|)^2=|a|^2+2|ab|+|b|^2=a^2+2|ab|+b^2\geq a^2+2ab+b^2=(a+b)^2=|a+b|^2$
$\Rightarrow |a|+|b|\geq |a+b|$
Dấu "=" xảy ra khi $2|ab|=2ab$ hay $ab\geq 0$
--------------------
Áp dụng vào bài:
$G=|x-2008|+|x-8|=|x-2008|+|8-x|\geq |x-2008+8-x|=2000$
Vậy $G_{\min}=2000$
Giá trị này đạt được khi $(x-2008)(8-x)\geq 0$
$\Leftrightarrow 8\leq x\leq 2008$
Tìm GTNN của \(P=x^{2008}-2008x+2008\)
\(P=x^{2008}-2008x+2008\)
\(P=x\left(x^{2007}-2008\right)+2008\ge2008\)
Dấu '' = '' xảy ra khi : x = 0
Vậy ...........
p/s : làm bừa
CTV gì mak kém thế
\(P=x^{2018}-2018x+2018\)
\(\Leftrightarrow P=x^{2018}+1+1+...+1-2018x+1\)(Ở giữa có 2017 số 1)
\(x^{2018}+1+1+...+1\left(2017so1\right)\ge2018\sqrt[2018]{x^{2018}}=2018x\)
\(\Rightarrow P\ge2018x-2018x+1=1\)
Vậy MIN = 1 <=> x = 1
p/s:CTV gà mờ
Phạm Tuấn Đạt Em ms học lớp 8 anh ạ !
Tìm GTNN của\(A=|x-2008|+|x-2020|\)
Do \(\left|a\right|=\left|-a\right|\) nên:
\( A=\left|x-2008\right|+\left|x-2020\right|\)
\(=\left|x-2008\right|+\left|2020-x\right|\)
\(\ge\left|x-2008+2020-x\right|=12\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-2008\right)\left(2020-x\right)\ge0\)
hay \(\orbr{\begin{cases}x-2008\ge0\\2020-x\ge0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x\ge2008\\x\le2020\end{cases}\Leftrightarrow2008\le}x\le2020\)
Thêm xíu:
Vậy \(A_{min}=12\Leftrightarrow2008\le x\le2020\)
\(A=\left|x-2008\right|+\left|x-2020\right|\)
\(\Rightarrow A=\left|x-2008\right|+\left|-x+2020\right|\ge\left|x-2008-x+2020\right|=12\)
dấu = xảy ra khi \(\left(x-2008\right).\left(-x+2020\right)\ge0\)
\(\Rightarrow2018\le x\le2020\)
vậy min A=12 khi và chỉ khi \(2018\le x\le2020\)
tìm GTNN của A=/x-2008/+/x-2009/ (/ / là trị tuyệt đối nha)
Cho biểu thức E = \(\frac{\left(X+2007\right)\left(X+2008\right)}{X}\)
Tìm giá trị của X để biểu thức E đạt GTNN và tìm GTNN đó?
Bạn ơi bài này có cho thêm đk x > 0 ko ?