cho x+y=1 va xy khac 0 cmr x/(y3-1)-y/(x3-1)+2(x-y)/(x2y2+3)=0
cho x+y=1 va xy khac 0 cmr x/y^3-y/x^3=-2(x-y)/x^2×y^2+3
CM với mọi x,y ta luôn có: (xy+1)(x2y2-xy+1)+(x3-1)(1-y3)=x3+y3
Ta có:
VT: \(\left(xy+1\right)\left(x^2y^2-xy+1\right)+\left(x^3-1\right)\left(1-y^3\right)\)
\(=\left(xy\right)^3+1^3+x^3-x^3y^3-1+y^3\)
\(=x^3y^3+1+x^3-x^3y^3-1+y^3\)
\(=\left(x^3y^3-x^3y^3\right)+\left(1-1\right)+\left(x^3+y^3\right)\)
\(=x^3+y^3=VP\left(dpcm\right)\)
CMR
a) xyz≠0, 1/x+1/y+1/z=0 thì (x2y2+y2z2+z2x2)2=2(x4y4+y4z4+z4x4)
b) x+y+z=0 thì x3+y3+z3-3xyz=0
tìm giá trị biểu thức
a, A=3x3y+6x2y2+3xy3tại x=1/2;y=-1/3
b,B=x2y2=xy=x3=y3 tại x=-1;y=3
\(A=3\cdot\dfrac{1}{8}\cdot\dfrac{-1}{3}+6\cdot\dfrac{1}{4}\cdot\dfrac{1}{9}+3\cdot\dfrac{1}{2}\cdot\dfrac{-1}{27}\)
\(=-\dfrac{1}{8}+\dfrac{1}{6}-\dfrac{1}{18}=\dfrac{-9}{72}+\dfrac{12}{72}-\dfrac{4}{72}=-\dfrac{1}{72}\)
Câu b đề sai rồi bạn
Cho xy khac 0 va x+y=1
Chung minh rang : x/y^3-1+y/x^3-1-2(xy-2)/(xy)^2+3=0
Cho x+y =1 và xy khác 0. Chứng minh rằng xy3−1−yx3−1+2(x−y)x2y2+3=0xy3−1−yx3−1+2(x−y)x2y2+3=0.
a)Chứng minh x3 + y3 ≥xy(x+y) với x,y≥0
b)Cho x,y,z>0 thỏa mãn xyz=1
CMR:\(\dfrac{1}{x^3+y^3+1}+\dfrac{1}{y^3+z^3+1}+\dfrac{1}{z^3+x^3+1}\le1\)
Lời giải:
a. Xét hiệu:
$x^3+y^3-xy(x+y)=(x^3-x^2y)-(xy^2-y^3)=x^2(x-y)-y^2(x-y)$
$=(x-y)(x^2-y^2)=(x-y)^2(x+y)\geq 0$ với mọi $x,y\geq 0$
$\Rightarrow x^3+y^3\geq xy(x+y)$
Dấu "=" xảy ra khi $x=y$
b.
Áp dụng BĐT phần a vô:
$x^3+y^3\geq xy(x+y)$
$\Rightarrow x^3+y^3+1\geq xy(x+y)+1=xy(x+y)+xyz=xy(x+y+z)$
$\Rightarrow \frac{1}{x^3+y^3+1}\leq \frac{1}{xy(x+y+z)}=\frac{xyz}{xy(x+y+z)}=\frac{z}{x+y+z}$
Hoàn toàn tương tự với các phân thức còn lại suy ra:
$\text{VT}\geq \frac{z}{x+y+z}+\frac{x}{x+y+z}+\frac{y}{x+y+z}=1$
Ta có đpcm
Dấu "=" xảy ra khi $x=y=z=1$
Áp dụng bđt AM - GM:
\(x^3+1+1\ge3x;y^3+1+1\ge3y;z^3+1+1\ge3z;2x+2y+2z\ge6\sqrt[3]{xyz}=6\).
Cộng vế với vế các bđt trên rồi rút gọn ta có đpcm.
Áp dụng BĐT Cosi:
\(\left(x^3+1+1\right)+\left(y^3+1+1\right)+\left(z^3+1+1\right)\)
\(\ge3\left(x+y+z\right)\)
\(\ge x+y+z+2.3\sqrt[3]{xyz}\)
\(=x+y+z+6\)
\(\Rightarrow x^3+y^3+z^3\ge x+y+z\)
Đẳng thức xảy ra khi \(x=y=z=1\)
cho x,y,z>0 và x3+y3+z3=1.
CMR:\(\dfrac{x^2}{\sqrt{1-x^2}}+\dfrac{y^2}{\sqrt{1-y^2}}+\dfrac{z^2}{\sqrt{1-z^2}}\ge2\)
Ta có với x,y,z >0 thì:\(\dfrac{x^2}{\sqrt{1-x^2}}=\dfrac{x^3}{x\sqrt{1-x^2}}\)
Bất đẳng thức Cô si ta có:
\(x\sqrt{1-x^2}\le\dfrac{x^2+1-x^2}{2}=\dfrac{1}{2}\\ \Rightarrow\dfrac{1}{x\sqrt{1-x^2}}\ge2\\ \Rightarrow\dfrac{x^3}{x\sqrt{1-x^2}}\ge2x^3\Leftrightarrow\dfrac{x^2}{\sqrt{1-x^2}}\ge2x^3\)
Tương tự: \(\dfrac{y^2}{\sqrt{1-y^2}}\ge2y^3;\dfrac{z^2}{\sqrt{1-z^2}}\ge2z^3\)
Từ đó ta có:\(\dfrac{x^2}{\sqrt{1-x^2}}+\dfrac{y^2}{\sqrt{1-y^2}}+\dfrac{z^2}{\sqrt{1-z^2}}\ge2\left(x^3+y^3+z^3\right)=2\left(dpcm\right)\)