Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ẩn danh
Xem chi tiết

3: \(\begin{cases}2x-3y=11\\ -4x+6y=5\end{cases}\Rightarrow\begin{cases}4x-6y=22\\ -4x+6y=5\end{cases}\)

=>\(\begin{cases}4x-6y-4x+6y=22+5\\ 2x-3y=11\end{cases}\Rightarrow\begin{cases}0x=27\\ 2x-3y=11\end{cases}\)

=>(x;y)∈∅

4: \(\begin{cases}3x+2y=1\\ 2x-y=3\end{cases}\Rightarrow\begin{cases}3x+2y=1\\ 4x-2y=6\end{cases}\)

=>\(\begin{cases}3x+2y+4x-2y=1+6=7\\ 2x-y=3\end{cases}\Rightarrow\begin{cases}7x=7\\ y=2x-3\end{cases}\)

=>\(\begin{cases}x=1\\ y=2\cdot1-3=2-3=-1\end{cases}\)

5: \(\begin{cases}2x+5y=2\\ 6x-15y=6\end{cases}\Rightarrow\begin{cases}6x+15y=6\\ 6x-15y=6\end{cases}\)

=>\(\begin{cases}6x+15y+6x-15y=6+6=12\\ 2x+5y=2\end{cases}=.\begin{cases}12x=12\\ 5y=2-2x\end{cases}\)

=>\(\begin{cases}x=1\\ 5y=2-2\cdot1=0\end{cases}\Rightarrow\begin{cases}x=1\\ y=0\end{cases}\)

Vy trần
Xem chi tiết
Nguyễn Hoàng Minh
23 tháng 10 2021 lúc 10:48

\(b,N=\left(2x-1\right)^2-4\ge-4\\ N_{min}=-4\Leftrightarrow x=\dfrac{1}{2}\\ c,P=\left(2x-5\right)^2+6\left(2x-5\right)+9-4\\ P=\left(2x-5+3\right)^2-4=\left(2x-2\right)^2-4\ge-4\\ P_{min}=-4\Leftrightarrow x=1\\ d,Q=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1\\ Q=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\\ Q_{min}=1\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Akai Haruma
23 tháng 10 2021 lúc 14:10

6a.

$M=x^2-x+1=(x^2-x+\frac{1}{4})+\frac{3}{4}$

$=(x-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}$

Vậy $M_{\min}=\frac{3}{4}$ khi $x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}$

phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 3 2022 lúc 12:56

a: x+1/4=1/5

=>x=1/5-1/4

=>x=-1/20

b: x-1/5=3/20

=>x=3/20+1/5

=>x=3/20+4/20=7/20

c: \(\dfrac{5}{6}-x=1\)

=>x=5/6-1=-1/6

 

tuan nguyen
Xem chi tiết
Nguyễn Trần Thành Đạt
8 tháng 8 2021 lúc 23:19

Em hãy đăng bài ở môn Toán nhé!

Nguyễn Lê Phước Thịnh
8 tháng 8 2021 lúc 23:55

Bài 2: 

a: \(8x^3-36x^2+54x-27=\left(2x-3\right)^3\)

b: \(x^3+6x^2+12x+8=\left(x+2\right)^3\)

c: \(27x^3+8y^3=\left(3x+2y\right)\left(9x^2-6xy+4y^2\right)\)

d: \(x^3-\dfrac{y^3}{8}=\left(x-\dfrac{1}{2}y\right)\left(x^2+\dfrac{1}{2}xy+\dfrac{1}{4}y^2\right)\)

Trương Minh Ánh
Xem chi tiết
hoàng văn nghĩa
6 tháng 1 2023 lúc 16:25

có bài 2 nào đâu

Trương Minh Ánh
6 tháng 1 2023 lúc 21:53

Bài 4 ý

Trương Minh Ánh
6 tháng 1 2023 lúc 21:56

Bài 5 ý

 

Khánh Linh
Xem chi tiết
Trên con đường thành côn...
17 tháng 7 2021 lúc 17:09

undefined

Nguyễn Lê Phước Thịnh
17 tháng 7 2021 lúc 22:53

Bài 4: 

c) Ta có: \(\dfrac{x^3}{8}+\dfrac{x^2y}{2}+\dfrac{xy^2}{6}+\dfrac{y^3}{27}\)

\(=\left(\dfrac{x}{2}\right)^3+3\cdot\left(\dfrac{x}{2}\right)^2\cdot\dfrac{y}{3}+3\cdot\dfrac{x}{2}\cdot\left(\dfrac{y}{3}\right)^2+\left(\dfrac{y}{3}\right)^3\)

\(=\left(\dfrac{1}{2}x+\dfrac{1}{3}y\right)^3\)

\(=\left(\dfrac{-1}{2}\cdot8+\dfrac{1}{3}\cdot6\right)^3=\left(-4+2\right)^3=-8\)

Nguyễn Lê Phước Thịnh
17 tháng 7 2021 lúc 22:54

Bài 6:

a) Ta có: \(P=\left(x+2\right)^3+\left(x-2\right)^3-2x\left(x^2+12\right)\)

\(=x^3+6x^2+12x+8+x^3-6x^2+12x-8-2x^3-12x\)

=0

b) Ta có: \(Q=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)

\(=x^3-3x^2+3x-1-x^3-3x^2-3x-1+6x^2-6\)

=-8

Thao Le
Xem chi tiết
Vyhoang
Xem chi tiết
Akai Haruma
31 tháng 12 2023 lúc 12:02

Lời giải:
c.

$4(x+5)^3-7=101$

$4(x+5)^3=101+7=108$

$(x+5)^3=108:4=27=3^3$

$\Rightarrow x+5=3$

$\Rightarrow x=-2$

d.

$2^{x+1}.3+15=39$

$2^{x+1}.3=39-15=24$

$2^{x+1}=24:3=8=2^3$

$\Rightarrow x+1=3$

$\Rightarrow x=2$

Tuyet Anh Lai
Xem chi tiết
pourquoi:)
10 tháng 5 2022 lúc 14:08

a, Xét Δ ABC, có :

\(BC^2=AB^2+AC^2\) (định lí Py - ta - go)

=> \(BC^2=10^2+8^2\)

=> \(BC^2=164\)

=> \(BC=12,8\left(cm\right)\)

b, Xét Δ ABE và Δ HBE, có :

\(\widehat{ABE}=\widehat{HBE}\) (BE là tia phân giác \(\widehat{ABC}\))

\(\widehat{BAE}=\widehat{BHE}=90^o\)

BE là cạnh chung

=> Δ ABE = Δ HBE (g.c.g)

=> AB = HB

Xét Δ ABH, có : AB = HB (cmt)

=> Δ ABH cân tại B

c,

Gọi O là giao điểm của tia AH và BE

Xét Δ cân ABH, có :

BO là tia phân giác \(\widehat{ABH}\)

=> BO là đường cao

=> \(BO\perp AH\)

=> \(BE\perp AH\)