tìm gtln của 2x2+4x+9x2+2x+4/9x2+2x+4,
tìm gtnn (gtln) của:
a) A= 4x2-4x+10 b) B= 2x2-3x-1
c) C= 4x2+2y2+4xy+4x+6y+1 d) D= (3x-1)2-4(3x-1)x+4x2
e) G= 9x2+2y2+6xy+4y+5 f) H= 2x2+3y2-2xy+4y+2x+5
g) K= xy+yz+zx; biết x+y+z= 3
nhờ mn giúp mik vs nha
\(A=\left(2x-1\right)^2+9\ge9\\ A_{min}=9\Leftrightarrow x=\dfrac{1}{2}\\ B=2\left(x^2-2\cdot\dfrac{3}{4}x+\dfrac{9}{16}\right)+\dfrac{1}{8}=2\left(x-\dfrac{3}{4}\right)^2+\dfrac{1}{8}\ge\dfrac{1}{8}\\ B_{min}=\dfrac{1}{8}\Leftrightarrow x=\dfrac{3}{4}\\ C=\left(4x^2+4xy+y^2\right)+2\left(2x+y\right)+1+\left(y^2+4y+4\right)-4\\ C=\left[\left(2x+y\right)^2+2\left(2x+y\right)+1\right]+\left(y+2\right)^2-4\\ C=\left(2x+y+1\right)^2+\left(y+2\right)^2-4\ge-4\\ C_{min}=-4\Leftrightarrow\left\{{}\begin{matrix}2x=-1-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-2\end{matrix}\right.\)
\(D=\left(3x-1-2x\right)^2=\left(x-1\right)^2\ge0\\ D_{min}=0\Leftrightarrow x=1\\ G=\left(9x^2+6xy+y^2\right)+\left(y^2+4y+4\right)+1\\ G=\left(3x+y\right)^2+\left(y+2\right)^2+1\ge1\\ G_{min}=1\Leftrightarrow\left\{{}\begin{matrix}3x=-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-2\end{matrix}\right.\)
\(H=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(2y^2+4y+2\right)+2\\ H=\left(x-y\right)^2+\left(x+1\right)^2+2\left(y+1\right)^2+2\ge2\\ H_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=-1\\y=-1\end{matrix}\right.\Leftrightarrow x=y=-1\)
Ta luôn có \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\\ \Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\\ \Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz\ge3xy+3yz+3xz\\ \Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\\ \Leftrightarrow\dfrac{3^2}{3}\ge xy+yz+xz\\ \Leftrightarrow K\le3\\ K_{max}=3\Leftrightarrow x=y=z=1\)
1.(x2+3).(x4-3x2+9)
2.(2x+1).(4x2-2x+1)
3.(x2+2).(x4-2x2+4)
4.(3x+2).(9x2-6x+4)
\(1,=x^6+27\\ 2,=8x^3+1\\ 3,=x^6+8\\ 4,=27x^3+8\)
1. (x2 + 3)(x4 - 3x2 + 9)
= x6 + 27
2. (2x + 1)(4x2 - 2x + 1)
= 8x3 + 1
3. (x2 + 2)(x4 - 2x2 + 4)
= x6 + 8
4. (3x + 2)(9x2 - 6x + 4)
= 27x3 + 8
1: \(\left(x^2+3\right)\left(x^4-3x^2+9\right)=x^6+27\)
2: \(\left(2x+1\right)\left(4x^2-2x+1\right)=8x^3+1\)
3: \(\left(x^2+2\right)\left(x^4-2x^2+4\right)=x^6+8\)
4: \(\left(3x+2\right)\left(9x^2-6x+4\right)=27x^3+8\)
Tìm x, biết
b) x2 - 2x + 1 = 4
c) x2 - 4x + 4 = 9
d) 4x2 - 4x + 1 = 4
e) x2 - 2x - 8 = 0
f) 9x2 - 6x - 8 = 0
b)x2-2x+1=4
⇔(x-1)2=4
\(\Leftrightarrow\left[{}\begin{matrix}x-1=2\\x-1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
c)x2-4x+4=9
⇔ (x-2)2=9
\(\Leftrightarrow\left[{}\begin{matrix}x-2=3\\x-2=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
d)4x2-4x+1=4
⇔ (2x-1)2=4
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=4\\2x-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-3}{2}\end{matrix}\right.\)
e)x2-2x-8=0
⇔ x2-4x+2x-8=0
⇔ x(x-4)+2(x-4)=0
⇔(x-4)(x+2)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
f)9x2-6x-8=0
⇔ 9x2-12x+6x-8=0
⇔ 3x(3x-4)+2(3x-4)=0
⇔ (3x-4)(3x+2)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=\dfrac{-2}{3}\end{matrix}\right.\)
Tìm x:
a) x3-9x2-4x-36=0
b)x-2/4=2x+1/3
b) Ta có: \(\dfrac{x-2}{4}=\dfrac{2x+1}{3}\)
\(\Leftrightarrow3\left(x-2\right)=4\left(2x+1\right)\)
\(\Leftrightarrow3x-6=8x+4\)
\(\Leftrightarrow3x-8x=4+6\)
\(\Leftrightarrow-5x=10\)
hay x=-2
Vậy: x=-2
a) x3-9x2-4x-36=0
⇔ x2(x-9)-4(x-9)=0
⇔ (x-9)(x2-4)=0
⇒ Xảy ra 2 trường hợp:
- TH1: x-9=0 ⇔ x=9
- TH2: x2-4=0 ⇔ x=2 hoặc x=-2
Vậy x=9 hoặc x=2 hoặc x=-2.
Bài 1: Thực hiện phép tính
a/ 5x2y (x2y– 4xy2 + 7xy)
b/ 3xy2 (x2y3 + x 2y – xy2 )
c/ 3x(12x2 + 4x – 5) + 2x(9x2 – 6x + 7)
d/ 5x(2x2 – 9x – 5) – 9x (x2 - 7x – 4)
a/ 5x2y (x2y– 4xy2 + 7xy)
`=5x^4y^2-20x^3y^3+35x^3y^2`
b/ 3xy2 (x2y3 + x 2y – xy2 )
`=3x^3y^5+3x^3y^3-3x^2y^4`
c/ 3x(12x2 + 4x – 5) + 2x(9x2 – 6x + 7)
`=36x^3+12x^2-15x+18x^3-18x^2+14x`
`=54x^3-6x^2-x`
d/ 5x(2x2 – 9x – 5) – 9x (x2 - 7x – 4)
`=10x^3-45x^2-25x-9x^3+63x^2+36x`
`=x^3+18x^2+11x`
Bài tập 2
Câu 1: Phân tích đa thức thành nhân tử: a. 2x2 - 3x - 2
b. 4x(x - 2) + 3(2 - x)
c. 27x3 + 8 d. x2 + 2x - y2 + 1
Câu 2 (2 điểm): Tìm giá trị của x, biết:
a. 9x2 + 6x - 3 = 0
b. x(x - 2)(x + 2) - (x + 2)(x2 - 2x + 4) = 4
Câu 3 (2 điểm): Rút gọn và tính giá trị biểu thức:
a. A = x(x + y) - 5(x + y) với x = 1, y = 2
b. B = 3x(x2 - 3) + x2(4 - 3x) - 4x2 + 1 tại x = 1/9
Câu 4: Cho hình thang vuông ABCD (∠A = ∠D = 90o) và CD = 2AB. Kẻ DH vuông góc với AC (H ∈ AC). Gọi M là trung điểm của HC, N là trung điểm của DH. Chứng minh rằng:
a. MN ⊥ AD
b. ABMN là hình bình hành.
c. ∠BMD = 90o
Câu 5: 1) Cho biểu thức: A = (2x - 3)2 - (x + 1)(x + 5) + 2 Rút gọn và tìm giá trị nhỏ nhất của A.
2) Cho B = n2 - 27n2 + 121. Tìm số tự nhiên n để B là số nguyên.
Câu 2:
a: \(\Leftrightarrow3x^2+2x-1=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{3}\end{matrix}\right.\)
b: \(\Leftrightarrow x^3-4x-x^3-8=4\)
hay x=-3
C =
D = x-4+(x>4)
\(C=\sqrt{9x^2}-2x=\left|3x\right|-2x=-3x-2x=-5x\left(x< 0\right)\)
\(D=x-4+\sqrt{16-8x+x^2}\left(x>4\right)\)
\(=x-4+\sqrt{\left(x-4\right)^2}\)
\(=x-4+\left|x-4\right|\)
\(=x-4+x-4\)
\(=2x-8\)
\(C=\sqrt{9x^2}-2x=-3x-2x=-5x\)
\(D=x-4+\sqrt{x^2-8x+16}=x-4+x-4=2x-8\)
Thực hiện phép chia:
a) ( x 3 - 2 x 2 - 15x + 36) : (x + 4);
b) ( 2 x 4 + 2 x 3 + 3 x 2 - 5x - 20) : ( x 2 + x + 4);
c) (2 x 3 + 11 x 2 + 18x-3) : (2x + 3);
d) (2x3 + 9x2 +5x + 41) : (2x2 - x + 9).
a) Đa thức thương x 2 – 6x + 9.
b) Đa thức thương 2 x 2 – 5.
c) Đa thức thương x 2 + 4x + 3 và đa thức dư -12.
d) Đa thức x + 5 và đa thức dư x – 4.
Tìm x
(2x+1)2-4x(x+3)=9
x2-12x=-36
\(a,\Leftrightarrow4x^2+4x+1-4x^2-12x=9\\ \Leftrightarrow-8x=8\Leftrightarrow x=-1\\ b,\Leftrightarrow\left(x-6\right)^2=0\Leftrightarrow x=6\)
b: \(\Leftrightarrow x^2-12x+36=0\)
hay x=6