Đoạn giải hệ phương trình câu a giải chi tiết hộ em cách tính với ạ
Giai bằng cách lập phương trình giúp mik với . Giải chi tiết hộ mik ạ . Mik cảm ơn nhiền
gọi x là vận tốc của ô tô
y là vận tốc của xe máy (km/h) (x>y>0)
sau 4h 2 xe gặp nhau nên tổng quãng đường AB bằng:
AB= 4.x+4.y = 4.(x+y) (km)
nên thgian ô tô và xe máy đi hết AB lần lượt là:
Gọi thời gian xe máy đi hết quãng đường AB là x (h) (x>4)
thời gian xe máy đi hết quãng đường AB là y (h) (y>4)
Trong 1 giờ xe máy đi được \(\dfrac{1}{x}\) (quãng đường)
Trong 1 giờ ô tô đi được \(\dfrac{1}{y}\) (quãng đường)
Trong 1 giờ hai xe đi được \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\left(1\right)\)
Mà thời gian ô tô về đến A sớm hơn xe máy về đến B là 6 giờ nên: \(x-y=6\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\\x-y=6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{x-6}=\dfrac{1}{4}\\y=x-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-14x+24=0\\y=2-6\end{matrix}\right.\)(ĐK:\(x\ne6\)) \(\Leftrightarrow\left\{{}\begin{matrix}x=12\\y=6\end{matrix}\right.\)(TM)
Vậy thời gian xe máy đi hết quãng đường AB là 12 giờ
thời gian ô tô đi hết quãng đường AB là 6giờ
-Chúc bạn học tốt-
Mn giải chi tiết hộ em câu 3 với,làm chi tiết hộ em ạ,em cảm ơn
Gọi số sản phẩm dự định là a (sản phẩm ) (a là số tự nhiên khác 0)
Vì theo dự định mỗi ngày sản xuất 50 sản phẩm nên số ngày theo dự định là \(\dfrac{a}{50}\)
Nhưng thực tế , đội đã sản xuất theeo được 30 sản phẩm do mỗi ngày vượt mức 10 sản phẩm (nghĩa là sản xuất 60 sản phẩm) , nên số ngày thực tế là \(\dfrac{a+30}{60}\)
Vì thực tế sớm hơn dự định 2 ngày nên ta có phương trình :
\(\dfrac{a}{50}=\dfrac{a+30}{60}+2\\ \Leftrightarrow6a=5\left(a+30+120\right)\\\Leftrightarrow a=750\left(t.m\right) \)
Vậy số sản phẩm dự định là 750 sản phẩm
Bài 3:
Gọi số sản phẩm đội phải sản xuất theo kế hoạch là x( sản phẩm, x\(\in N\)*)
Thời gian đội sản xuất theo kế hoạch là: \(\dfrac{x}{50}\) (ngày)
Số ngày làm thực tế là: \(\dfrac{x+30}{50+10}=\dfrac{x+30}{60}\) (ngày)
Theo bài ra, ta có phương trình:
\(\dfrac{x}{50}-\dfrac{x+30}{60}=2\)
\(\Leftrightarrow\dfrac{60x-50\left(x+30\right)}{50.60}=2\)
\(\Leftrightarrow60x-50x-1500=6000\Leftrightarrow x=750\)(thoả mãn)
Vậy theo kế hoạch đội phải sản xuất 750 sản phẩm
Giúp em với mn, câu c thôi ạ. Giải chi tiết (ko tắt) hộ em với ạ
a: Thay \(x=3+2\sqrt{2}\) vào A, ta được:
\(A=\dfrac{3+2\sqrt{2}-\sqrt{2}-1+2}{\sqrt{2}+1+3}=\dfrac{4+\sqrt{2}}{4+\sqrt{2}}=1\)
\(b,B=\dfrac{x-4+2\sqrt{x}+6-3\sqrt{x}-4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\\ B=\dfrac{x-\sqrt{x}+2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\\ c,M=B:A=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}+3}{x-\sqrt{x}+2}=\dfrac{\sqrt{x}+1}{x-\sqrt{x}+2}\\ M=\dfrac{x-\sqrt{x}+2-x+2\sqrt{x}-1}{x-\sqrt{x}+2}\\ M=1-\dfrac{x-2\sqrt{x}+1}{x-\sqrt{x}+2}=1-\dfrac{\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+2}\)
Ta có \(\left(\sqrt{x}-1\right)^2\ge0;x-\sqrt{x}+2=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\)
Do đó \(\dfrac{\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+2}\ge0\)
\(\Leftrightarrow M=1-\dfrac{\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+2}\le1-0=1\)
Vậy \(M_{max}=1\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\left(tm\right)\)
Giải hệ phương trình (mn giải chi tiết giúp em vs ạ): \(\left\{{}\begin{matrix}x-5y=-24\\x=3y\end{matrix}\right.\)
Để giải hệ phương trình {x−5y=−24, x=3y}, ta có thể sử dụng các bước sau:
Chuyển đổi hệ phương trình thứ hai thành dạng x = 3y: x = 3y
Dùng hệ phương trình thứ hai để thay thế x trong hệ phương trình thứ nhất: x−5y=−24 => 3y-5y = -24 => -2y = -24 => y = 12
Dùng hệ phương trình thứ hai và giá trị y đã tìm được để tìm giá trị x: x = 3y => x = 3(12) => x = 36
Vậy, giải của hệ phương trình là (x, y) = (36, 12)
\(\left\{{}\begin{matrix}x-5y=-24\\x=3y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y-5y=-24\\x=3y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2y=-24\\x=3y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=12\\x=36\end{matrix}\right.\)
giải chi tiết giúp em với ạ, em cảm ơn ^^ Giải bất phương trình sau
ĐK: \(x\ge0\)
Dễ thấy \(1-\sqrt{2\left(x^2-x+1\right)}\le1-\sqrt{2}< 0\)
Khi đó bất phương trình tương đương:
\(x-\sqrt{x}\le1-\sqrt{2\left(x^2-x+1\right)}\)
\(\Leftrightarrow\sqrt{x}-\dfrac{1}{\sqrt{x}}-1+\sqrt{2\left(x+\dfrac{1}{x}-1\right)}\le0\)
\(\Leftrightarrow\sqrt{x}-\dfrac{1}{\sqrt{x}}-1+\sqrt{2\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)^2+2}\le0\)
\(\Leftrightarrow t-1+\sqrt{2t^2+2}\le0\)
Giải và vẽ trục dùm em với please 😭😭 (giải chi tiết dùm em câu này nhé,em ko hiểu cách tính của câu như vậy í ạ 😢😭)
\(\dfrac{2x+2}{3}< 2+\dfrac{x-2}{2} \Leftrightarrow2\left(2x+2\right)< 12+3\left(x-2\right) \Leftrightarrow4x+4< 3x+6 \Leftrightarrow4x< 3x+2 \Leftrightarrow x< 2\)
Giải phương trình:
\(4x^2+8\sqrt{x-1}=14-3x\)
Giải CHI TIẾT phương trình này bằng phương pháp tạo \(A^2+B^2=0\) hoặc \(A^2-B^2=0\) hộ mình cái ạ!
Đk: \(x\ge1\)
\(\Leftrightarrow4\left(2\sqrt{x-1}-1\right)+\left(4x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\dfrac{4\left(4x-5\right)}{2\sqrt{x-1}+1}+\left(4x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(4x-5\right)\left(\dfrac{4}{2\sqrt{x-1}+1}+x+2\right)=0\)
\(\Leftrightarrow x=\dfrac{5}{4}\)(Dễ thấy ngoặc to lớn hơn 0 với \(x\ge1\))
Muốn giải mấy bài kiểu này thì mình hay đoán nghiệm trước
Việc đoán nghiệm thì có thể dùng kinh nghiệm hoặc bấm máy tính
Ở đây mình đoán được nghiệm là x=5/4 nên ta sẽ cố gắng tạo ra nhân tử dạng
4x-5 hoặc x-(5/4) ở đầy mình chọn nhân tử 4x-5
Trong những phương trình chứa căn thức thì để tạo nhân tử thì cách thường dùng nhất là phép liên hợp
Phép liên hợp là phép kiểu: \(\sqrt{a}-\sqrt{b}=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}=\dfrac{a-b}{\sqrt{a}+\sqrt{b}}\)
Ok, ta biến đổi pt lại để tạo nhân tử 4x-5:
\(\left(8\sqrt{x-1}-4\right)+\left(4x^2+3x-10\right)=0\) (ở đây ta thay x=5/4 vào 8căn(x-1) thì được 4 nên ta sẽ ghép với 4, còn phần còn lại của pt thì gộp lại chung)
\(\dfrac{4\left(2\sqrt{x-1}-1\right)\left(2\sqrt{x-1}+1\right)}{2\sqrt{x-1}+1}+\left(4x-5\right)\left(x+2\right)=0\)(sử dụng phép liên hợp)
\(\Leftrightarrow\dfrac{4\left(4x-5\right)}{2\sqrt{x-1}+1}+\left(4x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(4x-5\right)\left(\dfrac{4}{2\sqrt{x-1}+1}+x+2\right)=0\)
Ở đây thì với đk x>=1 thì ngoặc to sẽ lớn hơn 0 nên kêt luận x=5/4
Giải chi tiết hộ em câu 2 ạ
Giải phương trình: \(2^x=x^2\)
Giải cách tự luận chi tiết cho em với nha mn
log2 2 vế ta có: x = 2log2x
<=> x - 2.log2x = 0
Đặt f(x) = x - 2.log2x
f'(x) = 1 - \(\dfrac{2}{x.ln2}\)
Dễ thấy f'(x) có 1 nghiệm duy nhất. Nên theo định lý Rolle: pt f(x) = 0 có tối đa 2 nghiệm phân biệt
Mà x = 2 và x = 4 là 2 nghiệm của pt f(x) = 0
Nên pt có tập nghiệm S = {2; 4}
Thi trắc nghiệm mà vẫn giải tự luận à
Phương trình này ko thể giải 1 cách hoàn toàn trong chương trình phổ thông.
Với x<0 phương trình vẫn có nghiệm, nhưng ko thể tìm được bằng kiến thức trong SGK