Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyên Hoàng
Xem chi tiết

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(-2\right)}{4}=\dfrac{1}{2}\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{-1}{4}\end{matrix}\right.\)

\(A=\left(x_1-x_2\right)^2-x_1\left(x_1-\dfrac{1}{2}\right)\)

\(=\left(x_1+x_2\right)^2-4x_1x_2-x_1^2+\dfrac{1}{2}x_1\)

\(=\left(x_1+x_2\right)^2-4x_1x_2-x_1^2+x_1\left(x_1+x_2\right)\)

\(=\left(x_1+x_2\right)^2-4x_1x_2+x_1x_2\)

\(=\left(x_1+x_2\right)^2-3x_1x_2\)

\(=\left(\dfrac{1}{2}\right)^2-3\cdot\dfrac{-1}{4}=\dfrac{1}{4}+\dfrac{3}{4}=1\)

....
Xem chi tiết
missing you =
10 tháng 8 2021 lúc 17:46

,có \(ac< 0\)=>pt đã cho luôn có 2 nghiệm phân biệt

vi ét \(=>\left\{{}\begin{matrix}x1+x2=2\\x1x2=-1\end{matrix}\right.\)

a,\(A=\left(x1+x2\right)^2-2x1x2=.....\) thay số tính

b,\(B=\left(x1+x2\right)^3-3x1x2\left(x1+x2\right)=.......\)

c,\(C=x1^{2^2}+x2^{2^2}=\left(x1^2+x2^2\right)^2-2\left(x1x2\right)^2=\left[\left(x1+x2\right)^2-2x1x2\right]^2-2\left(x1x2\right)^2=....\)

\(D=x1x2\left(x1+x2\right)=.....\)

\(x1,x2\ne0=>E=\dfrac{\left(x1+x2\right)^3-3x1x2\left(x1+x2\right)}{x1x2}=...\)

\(F=\sqrt{\left(x1-x2\right)^2}=\sqrt{\left(x1+x2\right)^2-4x1x2}=....\)

\(x1,x2\ne-1=>G=\dfrac{\left(x1+x2\right)^2-2x1x2+x1x2}{x1x2+x1+X2+1}=...\)

\(x1,x2\ne0=>H=\left(\dfrac{x1x2+2}{x2}\right)\left(\dfrac{x1x2+2}{x1}\right)=\dfrac{\left(x1x2+2\right)^2}{x1x2}\)

\(=\dfrac{\left(x1x2\right)^2+4x1x2+4}{x1x2}=..\)

34 9/10 Chí Thành
Xem chi tiết
Thanh Hoàng Thanh
10 tháng 3 2022 lúc 23:05

\(\Delta'=\left(-2\right)^2-3.\left(-8\right)=4+24=28>0.\)

\(\Rightarrow\) Pt có 2 nghiệm phân biệt \(x_1;x_2.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{2+2\sqrt{7}}{3}.\\x_2=\dfrac{2-2\sqrt{7}}{3}.\end{matrix}\right.\)

Lizy
Xem chi tiết

\(\text{Δ}=\left[-\left(m+1\right)\right]^2-4\cdot1\cdot m\)

\(=\left(m+1\right)^2-4m\)

\(=\left(m-1\right)^2>=0\forall m\)

=>Phương trình luôn có hai nghiệm

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=m+1\\x_1x_2=\dfrac{c}{a}=m\end{matrix}\right.\)

\(x_1^2+x_2^2=\left(x_1-1\right)\left(x_2-1\right)-x_1-x_2+5\)

=>\(\left(x_1+x_2\right)^2-2x_1x_2=x_1x_2-2\left(x_1+x_2\right)+6\)

=>\(\left(m+1\right)^2-2m=m-2\left(m+1\right)+6\)

=>\(m^2+1=m-2m-2+6\)

=>\(m^2+1=-m+4\)

=>\(m^2+m-3=0\)

=>\(m=\dfrac{-1\pm\sqrt{13}}{2}\)

Tiến Dũng Đặng
Xem chi tiết
Vân Trần Thị
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 5 2019 lúc 19:30

Theo Viet ta có \(\left\{{}\begin{matrix}x_1+x_2=-\frac{3m}{2}\\x_1x_2=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(P=\left(x_1+x_2\right)^2-4x_1x_2+\left(\frac{x_1+x_2+x_1x_2\left(x_1+x_2\right)}{x_1x_2}\right)^2\)

\(P=\frac{9m^2}{4}+2\sqrt{2}+\left(\frac{-\frac{3m}{2}-\frac{\sqrt{2}}{2}\left(-\frac{3m}{2}\right)}{-\frac{\sqrt{2}}{2}}\right)^2\)

\(P=\frac{9m^2}{4}+2\sqrt{2}+\left(\frac{27-8\sqrt{2}}{4}\right)m^2\)

\(P=\left(\frac{18-9\sqrt{2}}{2}\right)m^2+2\sqrt{2}\ge2\sqrt{2}\)

\(\Rightarrow P_{min}=2\sqrt{2}\) khi \(m=0\)

Munn
Xem chi tiết
S - Sakura Vietnam
9 tháng 12 2021 lúc 20:21
Việt Anh Nguyễn
Xem chi tiết
Nguyễn Minh Anh
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 4 2022 lúc 21:59

\(\Delta'=\left(2m+1\right)^2-\left(4m^2+4m\right)=1>0;\forall m\Rightarrow\) pt luôn có 2 nghiệm pb

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(2m+1\right)\\x_1x_2=4m^2+4m\end{matrix}\right.\)

\(\left|x_1-x_2\right|=x_1+x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2\ge0\\\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(2m+1\right)\ge0\\-2x_1x_2=2x_1x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ge-\dfrac{1}{2}\\x_1x_2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ge-\dfrac{1}{2}\\4m^2+4m=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m=0\\mm=-1< -\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)

Hồ Nhật Phi
15 tháng 4 2022 lúc 22:04

undefined

hoang trung hieu
15 tháng 4 2022 lúc 22:29

áp dụng vi et 
x1+x2=\(\dfrac{-b}{a}=4m+2\)
x1.x2=\(\dfrac{c}{a}=4m^2+4m\)
ta có :
\(|x_1-x_2|=x_1+x_2\)
<->(x1-x2)2=(x1+x2)2
<->(x1+x2)2-4x1.x2=(4m+2)2
<->(4m+2)2-4(4m2+4m)=(4m+2)2
<->16m2+4+16m-16m2-16m=16m2+4+16m
<->16m2+16m=0
<->16m(m+1)=0
<->m=0
     m=-1
vậy m =0 và m=-1 thì tm hệ thức trên