Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(-2\right)}{4}=\dfrac{1}{2}\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{-1}{4}\end{matrix}\right.\)
\(A=\left(x_1-x_2\right)^2-x_1\left(x_1-\dfrac{1}{2}\right)\)
\(=\left(x_1+x_2\right)^2-4x_1x_2-x_1^2+\dfrac{1}{2}x_1\)
\(=\left(x_1+x_2\right)^2-4x_1x_2-x_1^2+x_1\left(x_1+x_2\right)\)
\(=\left(x_1+x_2\right)^2-4x_1x_2+x_1x_2\)
\(=\left(x_1+x_2\right)^2-3x_1x_2\)
\(=\left(\dfrac{1}{2}\right)^2-3\cdot\dfrac{-1}{4}=\dfrac{1}{4}+\dfrac{3}{4}=1\)