Cho lim ( \(\sqrt{x^2+ax+5}+x\)) =5 Giá trị của a bằng bao nhiêu ?
x-> -∞
Câu 1: Rút gọn
\(\dfrac{2}{\sqrt{5}-\sqrt{3}}+\dfrac{3}{\sqrt{6}+\sqrt{3}}\)
Câu 2:
Cho A= \(\dfrac{1}{x-2\sqrt{x-5}+3}\). Tìm giá trị lớn nhất của A, giá trị đó đạt được khi x bằng bao nhiêu?
1 quy đồng lên ra được
2 \(A=\dfrac{1}{x-2\sqrt{x-5}+3}\le\dfrac{1}{5-2.0+3}=\dfrac{1}{8}\)
dấu"=" xảy ra<=>x=5
Cho l i m x → - ∞ x 2 + a x + 5 + x = 5 . Giá trị của a bằng bao nhiêu ?
A. 6
B. 10
C. -10
D. -6
lim x → − ∞ x 2 + a x + 5 + x = lim x → − ∞ a . x + 5 x 2 + a x + 5 − x = lim x → − ∞ a + 5 x − 1 + a x + 5 x 2 − 1 = − a 2
Mà lim x → − ∞ x 2 + a x + 5 + x = 5 ⇒ − a 2 = 5 ⇔ a = − 10.
Chọn đáp án C
lim(\(\sqrt{x^2+ax+5}-x\))=5. tìm giá trị của a
a. Có bao nhiêu giá trị của a để \(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2-ax+2021}-x+1\right)=a^2\)
b. Tìm a để hàm số f(x)=\(\left\{{}\begin{matrix}\dfrac{x^3+1}{x+1}khix\ne-1\\3akhix=-1\end{matrix}\right.\)gián đoạn tại điểm \(x_0=-1\)
c. Cho tứ diện đều ABCD .Góc giữa 2 vecto DA và BD bằng?
d. Cho hàm số y = f(x) = \(\dfrac{x^2-1}{2-2x}\)khi \(x\ne1\) .Để hàm số liên tục tại x=1 thì f(1) phải nhận giá trị nào dưới đây? (giải tự luận giúp em ạ)
A.-1 B.1 C.2 D.0
e. Cho hàm số \(f\left(x\right)=x^3+2x-1\) .Xét phương trình f(x) = 0 (1), trong các mệnh đề sau tìm mệnh đề sai? giải tự luận giúp em ạ
A. (1) có nghiệm rên khoảng (-1;1)
B. (1) Không có nghiệm trên khoảng (-5;3)
C. (1) có nghiệm trên R
D. (1) có nghiệm trên khoảng (0;1)
a.
\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2-ax+2021}-x+1\right)\)
\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{\left(\sqrt{x^2-ax+2021}-x\right)\left(\sqrt{x^2-ax+2021}+x\right)}{\sqrt{x^2-ax+2021}+x}+1\right)\)
\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{-ax+2021}{\sqrt{x^2-ax+2021}+x}+1\right)\)
\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{x\left(-a+\dfrac{2021}{x}\right)}{x\left(\sqrt{1-\dfrac{a}{x}+\dfrac{2021}{x^2}}+1\right)}+1\right)\)
\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{-a+\dfrac{2021}{x}}{\sqrt{1-\dfrac{a}{x}+\dfrac{2021}{x^2}}+1}+1\right)\)
\(=\dfrac{-a+0}{\sqrt{1+0+0}+1}+1=-\dfrac{a}{2}+1\)
\(\Rightarrow a^2=-\dfrac{a}{2}+1\Rightarrow2a^2+a-2=0\)
Pt trên có 2 nghiệm pb nên có 2 giá trị a thỏa mãn
b.
\(\lim\limits_{x\rightarrow-1}f\left(x\right)=\lim\limits_{x\rightarrow-1}\dfrac{x^3+1}{x+1}\)
\(=\lim\limits_{x\rightarrow-1}\dfrac{\left(x+1\right)\left(x^2-x+1\right)}{x+1}=\lim\limits_{x\rightarrow-1}\left(x^2-x+1\right)\)
\(=1+1+1=3\)
\(f\left(-1\right)=3a\)
Hàm gián đoạn tại điểm \(x_0=-1\) khi:
\(\lim\limits_{x\rightarrow-1}f\left(x\right)\ne f\left(-1\right)\Rightarrow3\ne3a\)
\(\Rightarrow a\ne1\)
c.
Tứ diện ABCD đều \(\Rightarrow\Delta ABD\) đều
\(\widehat{\left(\overrightarrow{DA};BD\right)}=180^0-\widehat{\left(\overrightarrow{DA};\overrightarrow{DB}\right)}=180^0-\widehat{ADB}=180^0-60^0=120^0\)
d.
\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\dfrac{x^2-1}{2-2x}=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x+1\right)}{-2\left(x-1\right)}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{x+1}{-2}=\dfrac{1+1}{-2}=-1\)
Để hàm liên tục tại \(x=1\)
\(\Rightarrow f\left(1\right)=\lim\limits_{x\rightarrow1}f\left(x\right)=-1\)
e.
Hàm \(f\left(x\right)\) là hàm đa thức nên liên tục trên R
\(f\left(0\right)=-1< 0\) ; \(f\left(1\right)=2>0\)
\(\Rightarrow f\left(0\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;1\right)\)
Do \(\left(0;1\right)\) đồng thời là tập con của \(\left(-1;1\right)\) ; \(\left(-5;3\right)\) và R nên \(f\left(x\right)\) cũng có nghiệm trên các khoảng này
Vậy B là đáp án sai
Cho A=\(\frac{1}{x-2\sqrt{x-5}+3}\)
Tìm giá trị lớn nhất của A, giá trị đó đạt được khi x bằng bao nhiêu
ĐK: x>=5
Ta có:
\(x-2\sqrt{x-5}+3=x-5-2\sqrt{x-5}+1-1+5+3=\left(\sqrt{x-5}-1\right)^2+7\ge7\)
=> \(A=\frac{1}{x-2\sqrt{x-5}+3}\le\frac{1}{7}\)
Dấu "=" xảy ra <=> \(\left(\sqrt{x-5}-1\right)^2=0\Leftrightarrow\sqrt{x-5}-1=0\Leftrightarrow\sqrt{x-5}=1\Leftrightarrow x-5=1\Leftrightarrow x=6\left(tm\right)\)
Vậy Giá trị lớn nhất của A = 1/7 , đạt tại x =6.
cho biết \(\lim\limits_{x\rightarrow-\infty}\dfrac{1-\sqrt{4x^2-x+5}}{a\left|x\right|+2}=\dfrac{2}{3}\). tính giá trị a?
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{1-\sqrt{4x^2-x+5}}{-ax+2}=\lim\limits_{x\rightarrow-\infty}\dfrac{\dfrac{1}{x}+\sqrt{4-\dfrac{1}{x}+\dfrac{5}{x^2}}}{-a+\dfrac{2}{x}}=\dfrac{2}{-a}=\dfrac{2}{3}\)
\(\Rightarrow a=-3\)
Cho a,b>0 . sao cho \(\lim\limits_{x\rightarrow0}\frac{\sqrt{\text{ax}+1}\cdot\sqrt[3]{bx+1}-1}{x}=1\)
Giá trị nhỏ nhất của \(a^2+b^2\) bằng bao nhiêu ?
\(\frac{\sqrt{ax+1}\left(\sqrt[3]{bx+1}-1\right)+\sqrt{ax+1}-1}{x}=\frac{\frac{bx\sqrt{ax+1}}{\sqrt[3]{\left(bx+1\right)^2}+\sqrt[3]{bx+1}+1}+\frac{ax}{\sqrt{ax+1}+1}}{x}=\frac{b\sqrt{ax+1}}{\sqrt[3]{\left(bx+1\right)^2}+\sqrt[3]{bx+1}+1}+\frac{a}{\sqrt{ax+1}+1}\)
\(\Rightarrow\lim\limits_{x\rightarrow0}f\left(x\right)=a+b\Rightarrow a+b=1\)
\(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2=\frac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)
Cho biết : \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{ax^2+1}-bx-2}{x^3-3x+2}\left(a,b\in R\right)\) có kết quả là một số thực. Giá trị của biểu thức \(a^2+b^2\) ?
Trình bày công thức các thứ khá dài nên tôi thử nói hướng, nếu bạn hiểu đc và làm đc thì ok còn nếu k hiểu thì bảo mình, mình làm full cho
Bây giờ phân tích mẫu trước, ra (x-1)2(x+2)
Để cái lim này nó ra đc 1 số thực thì tử và mẫu cùng phải triệt tiêu (x-1)2 đi, tức là tử phải chia hết (x-1)2, tức là tử cũng phải có nghiệm kép x=1
Do đó \(\left\{{}\begin{matrix}f\left(1\right)=0\\f'\left(1\right)=0\end{matrix}\right.\)
Biết x=a thoả mãn phương trình \(5\sqrt{\dfrac{2x+1}{4}}-\dfrac{1}{5}\sqrt{\dfrac{25\left(x+\dfrac{1}{2}\right)}{8}}=\dfrac{3}{2}\), khi đó giá trị của biểu thức 1-36a bằng bao nhiêu?
\(PT\Leftrightarrow\dfrac{5}{2}\sqrt{2x+1}-\sqrt{\dfrac{\dfrac{2x+1}{2}}{2}}=\dfrac{3}{2}\\ \Leftrightarrow\dfrac{5}{2}\sqrt{2x+1}-\dfrac{1}{2}\sqrt{2x+1}=\dfrac{3}{2}\\ \Leftrightarrow2\sqrt{2x+1}=\dfrac{3}{2}\\ \Leftrightarrow\sqrt{2x+1}=\dfrac{3}{4}\\ \Leftrightarrow2x+1=\dfrac{9}{16}\\ \Leftrightarrow2x=-\dfrac{7}{16}\\ \Leftrightarrow x=-\dfrac{7}{32}\\ \Leftrightarrow a=-\dfrac{7}{32}\\ \Leftrightarrow1-36a=1+36\cdot\dfrac{7}{32}=...\)