Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
a8 Kim Chi
Xem chi tiết
๖ۣۜHả๖ۣۜI
27 tháng 11 2021 lúc 19:54

B

Nguyen hoan
Xem chi tiết
ngô thái dương
24 tháng 10 2023 lúc 16:50

1. b3+b= 3                                       

(b3+b)=3                            

b.(3+1)=3

b. 4= 3

b=\(\dfrac{3}{4}\)

a3+a= 3                                       b3

(a3+a)=3                            

a.(3+1)=3

a. 4= 3

a=\(\dfrac{3}{4}\)

2

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 11 2017 lúc 4:25

a) Rút gọn M = 279. Với m = 2017 giá trị của M = 279.

b) N = 8 a 3   -   27 b 3   =   ( 2 a ) 3   -   ( 3 b ) 3 = ( 2 a   -   3 b ) 3  + 3.2a.3b.(2a - 3b)

Thay a.b = 12;2a - 3b = 5 ta thu được N - 1205.

c) Cách 1: Từ a + b = 1 Þ a = 1 - b thế vào K.

Thực hiện rút gọn K, ta có kết quả K = 1.

Cách 2: Tìm cách đưa biêu thức về dạng a + b.

a 3   +   b 3   =   ( a   +   b ) 3  – 3ab(a + b) = 1 - 3ab;

6 a 2 b 2 (a + b) = 6 a 2 b 2  kết hợp với 3ab( a 2 + b 2 ) bằng cách đặt 3ab làm nhân tử chung ta được 3ab( a 2  + 2ab + b 2 ) = 3ab.

Thực hiện rút gọn K = 1.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 1 2017 lúc 17:26

Với ab = 6, a + b = –5, ta được:

a3 + b3 = (a + b)3 – 3ab(a + b) = (–5)3 – 3.6.(–5) = –53 + 3.6.5 = –125 + 90 = –35

PH_gaming
Xem chi tiết
M r . V ô D a n h
16 tháng 8 2021 lúc 8:42

2

Ta có:

VP=(a+b)3−3ab(a+b)VP=(a+b)3-3ab(a+b)

     =a3+b3+3ab(a+b)−3ab(a+b)=a3+b3+3ab(a+b)-3ab(a+b)

     =a3+b3=VT(dpcm)

Châu Huỳnh
16 tháng 8 2021 lúc 8:45

1, \(VT=a^2+b^2=a^2+b^2+2ab-2ab=\left(a+b\right)^2-2ab=VP\left(đpcm\right)\)

Jess Nguyen
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 3 2022 lúc 0:01

Do \(a+b+c=1\) nên BĐT cần chứng minh tương đương:

\(2\left(a^3+b^3+c^3\right)+3abc\ge\left(ab+bc+ca\right)\left(a+b+c\right)\)

\(\Leftrightarrow2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)

Thật vậy, ta có:

\(2\left(a^3+b^3+c^3\right)=\left(a^3+b^3\right)+\left(b^3+c^3\right)+\left(c^3+a^3\right)\)

\(=\left(a+b\right)\left(a^2+b^2-ab\right)+\left(b+c\right)\left(b^2+c^2-bc\right)+\left(c+a\right)\left(c^2+a^2-ca\right)\)

\(\ge\left(a+b\right)\left(2ab-ab\right)+\left(b+c\right)\left(2bc-bc\right)+\left(c+a\right)\left(2ca-ca\right)\)

\(=ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

Huyền Khánh
Xem chi tiết
Nguyễn Hoàng Minh
8 tháng 11 2021 lúc 17:49

\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)=5^3-3\cdot4\cdot5=65\left(A\right)\)

Cíuuuuuuuuuu
Xem chi tiết
Yeutoanhoc
11 tháng 7 2021 lúc 17:47

`a)a(2+b)+b(a+2)`

`=2a+ab+ab+2b`

`=2(a+b)+2ab`

`=2.10+2.(-36)`

`=20-72=-52`

`b)a^2+b^2`

`=(a+b)^2-2ab`

`=10^2-2.(-36)`

`=100+72=172`

`c)a^3+b^3`

`=(a+b)(a^2-ab+b^2)`

`=10[(a+b)^2-3ab]`

`=10[10^2-3.(-36)]`

`=10(100+108)`

`=10.208=2080`

missing you =
11 tháng 7 2021 lúc 17:49

a, \(=>2a+ab+ab+2b=2\left(a+b+ab\right)=2\left(10-36\right)=-52\)

b, \(a^2+b^2=a^2+2ab+b^2-2ab=\left(a+b\right)^2-2ab=\left(10\right)^2-2\left(-36\right)=172\)

c, \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=10\left[\left(a+b\right)^2-3ab\right]\)

\(=10\left[10^2-3\left(-36\right)\right]=2080\)

Nguyễn Việt Lâm
11 tháng 7 2021 lúc 17:48

\(a\left(2+b\right)+b\left(a+2\right)=2ab+2\left(a+b\right)=2.\left(-36\right)+2.10=-52\)

\(a^2+b^2=\left(a+b\right)^2-2ab=172\)

\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)=2080\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 11 2018 lúc 18:17

a) HS tự chứng minh.

b) Áp dụng tính được:

i) 9261;                        ii) 7880599;         

iii) 5840;                      iv) 12140.

Ngọc Nam 7/1
Xem chi tiết
Nguyễn Trung Trực
25 tháng 11 2021 lúc 9:11

C

ツhuy❤hoàng♚
25 tháng 11 2021 lúc 9:11

 

C. A3,A4,B3,B4,C3 và C4.

C