x4 - 10x3-2(m-11)x2+2(5m+6)x+2m=0
giải pt : x4 - 10x3-2(m-11)x2+2(5m+6)x+2m=0
bài 13: tìm tất các giá trị của tham số m để phương trình sau có hai nghiệm dương
a) x2+(-2m-1)x-m+1=0
b)x2+(m+2)x-2m+1=0
c) 4x2+4(m+1)x+4m+1=0
d)-4x2+4(2m-1)x-m=0
e)-x2+(m+1)x-m=0
f)(m-2)x2+2(2m-3)x+5m-6=0
Để pt có 2 nghiệm dương (ko yêu cầu pb?) \(\left\{{}\begin{matrix}a\ne0\\\Delta\ge0\\x_1+x_2=-\frac{b}{a}>0\\x_1x_2=\frac{c}{a}>0\end{matrix}\right.\)
a/ \(\left\{{}\begin{matrix}\Delta=\left(2m-1\right)^2+4m-4\ge0\\x_1+x_2=2m+1>0\\x_1x_2=-m+1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4m^2-3\ge0\\m>-\frac{1}{2}\\m< 1\end{matrix}\right.\) \(\Rightarrow\frac{\sqrt{3}}{2}\le m< 1\)
b/ \(\left\{{}\begin{matrix}\Delta=\left(m+2\right)^2-4\left(-2m+1\right)\ge0\\-m-2>0\\-2m+1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2+12m\ge0\\m< -2\\m< \frac{1}{2}\end{matrix}\right.\) \(\Rightarrow m\le-12\)
c/
\(\left\{{}\begin{matrix}\Delta'=4\left(m+1\right)^2-4\left(4m+1\right)\ge0\\-m-1>0\\\frac{4m+1}{4}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-2m\ge0\\m< -1\\m>-\frac{1}{4}\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn
d/
\(\left\{{}\begin{matrix}\Delta'=4\left(2m-1\right)^2-4m\ge0\\2m-1>0\\\frac{m}{4}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4m^2-8m+1\ge0\\m>\frac{1}{2}\\m>0\end{matrix}\right.\) \(\Rightarrow m\ge\frac{2+\sqrt{3}}{2}\)
e/
\(\left\{{}\begin{matrix}\Delta=\left(m+1\right)^2-4m\ge0\\x_1+x_2=m+1>0\\x_1x_2=m>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)^2\ge0\\m>-1\\m>0\end{matrix}\right.\) \(\Rightarrow m>0\)
f/
\(\left\{{}\begin{matrix}m-2\ne0\\\Delta'=\left(2m-3\right)^2-\left(m-2\right)\left(5m-6\right)\ge0\\x_1+x_2=\frac{2\left(3-2m\right)}{m-2}>0\\x_1x_2=\frac{5m-6}{m-2}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\-m^2+4m-3\ge0\\\frac{3-2m}{m-2}>0\\\frac{5m-6}{m-2}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\1\le m\le3\\\frac{3}{2}< m< 2\\\left[{}\begin{matrix}m< \frac{6}{5}\\m>2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại m thỏa mãn
Cho x1, x2, x3, x4, x5, x6 là các số đôi một khác nhau thuộc tập {1, 2, 3, 4, 5, 6} và thỏa mãn x1-5x2+10x3-10x4+5x5-x6=0. Hỏi có bao nhiêu cách chọn bộ (x1, x2, x3, x4, x5, x6)?
Tìm các giá trị của tham số m để phương trình sau vô nghiệm (m - 2)x2 + 2(2m - 3)x + 5m - 6 = 0
(m - 2)x2 + 2(2m - 3)x + 5m - 6 = 0 (1)
- Nếu m - 2 = 0 ⇔ m = 2, khi đó phương trình (1) trở thành:
2x + 4 = 0 ⇔ x = -2 hay phương trình (1) có một nghiệm
Do đó m = 2 không phải là giá trị cần tìm.
- Nếu m - 2 ≠ 0 ⇔ m ≠ 2 ta có:
Δ' = (2m - 3)2 - (m - 2)(5m - 6)
= 4m2 - 12m + 9 - 5m2 + 6m + 10m - 12
= -m2 + 4m - 3 = (-m + 3)(m - 1)
(1) vô nghiệm ⇔ Δ' < 0 ⇔ (-m + 3)(m - 1) < 0 ⇔ m ∈ (-∞; 1) ∪ (3; +∞)
Vậy với m ∈ (-∞; 1) ∪ (3; +∞) thì phương trình vô nghiệm.
tìm m để pt \(x^4-2\left(m+1\right)x^2+2m+1=0\) có 4 nghiệm phân biệt
thỏa mãna, x1<x2<x3<X4<3
b,x1-x3=x3-x2=x2-x1
\(x^4-1-2\left(m+1\right)x^2+2\left(m+1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2+1\right)-2\left(m+1\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-2m-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=1\\x^2=2m+1\end{matrix}\right.\)
Pt có 4 nghiệm pb khi: \(\left\{{}\begin{matrix}2m+1>0\\2m+1\ne1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{1}{2}\\m\ne0\end{matrix}\right.\)
Do \(x=\pm1< 3\) nên để \(x_1< x_2< x_3< x_4< 3\) thì:
\(\sqrt{2m+1}< 3\Leftrightarrow m< 4\) \(\Rightarrow\left\{{}\begin{matrix}-\dfrac{1}{2}< m< 4\\m\ne0\end{matrix}\right.\)
b. \(\left\{{}\begin{matrix}x_1-x_3=x_3-x_2\\x_1-x_3=x_2-x_1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-x_2\\x_1-x_3=-x_1-x_1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_2=-x_1\\x_3=3x_1\end{matrix}\right.\)
Do vai trò \(x_1;x_2\) như nhau, giả sử \(x_1< 0\) \(\Rightarrow x_1;x_3\) là 2 nghiệm âm
TH1: \(\left\{{}\begin{matrix}x_1=-1\\x_2=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_3=-\sqrt{2m+1}\\x_3=3x_1\end{matrix}\right.\) \(\Rightarrow-\sqrt{2m+1}=-3\Rightarrow m=4\)
TH2: \(x_1=-\sqrt{2m+1}\Rightarrow\left\{{}\begin{matrix}x_3=-1\\x_3=3x_1\end{matrix}\right.\) \(\Rightarrow-1=-3\sqrt{2m+1}\) \(\Rightarrow m=-\dfrac{4}{9}\)
a)Tìm số nguyên x để A= x4 - 9x4+ 21x2+ x + a B = x-2
b)Tìm số nguyên x để A= x4 - 10x3 + 21x2 + 8x + a B= x+2
c) Tìm số nguyên x để A= 2x3 - 3x2 + ax + b B= x2-2+2
a:
Sửa đề: A=x^4-9x^3+21x^2+x+a
A chia hết cho B
=>x^4-2x^3-7x^3+14x^2+7x^2-14x+15x-30+a+30 chia hết cho x-2
=>a+30=0
=>a=-30
b: A chia hết cho B
=>x^4+2x^3-12x^3-24x^2+45x^2+90x-82x-164+a+164 chia hết cho x+2
=>a+164=0
=>a=-164
Có bao nhiêu số nguyên của m để phương trình \({x^4} - 10{x^3} - 2(m - 11){x^2} + 2(5m + 6)x + {m^2} + 2m = 0\) có bốn nghiệm phân biệt thuộc \(( - 2; + \infty )\) ?
\(x^4-2mx^2+2m-1=0 \) (1)
Tìm m để pt (1) có 4 nghiệm x1; x2 ;x3 ;x4 sao cho x1<x2<x3<x4 và x4 - x1= 3
a, Đặt x2=t(t≥0)x2=t(t≥0)
x4−2mx2+2m−1=0x4−2mx2+2m−1=0
⟺t2−2mt+2m−1=0⟺t2−2mt+2m−1=0 (**)
Để phương trình có 4 nghiệm phân biệt thì Δ′>0⟺m2−2m+1>0⟺(m−1)2>0⟺m≠1Δ′>0⟺m2−2m+1>0⟺(m−1)2>0⟺m≠1 (1)
Và {t1t2=2m−1>0t1+t2=2m>0 (∗){t1t2=2m−1>0t1+t2=2m>0 (∗)
⟺m>12⟺m>12 (2)
Phương trình bậc 4 trùng phương thì có 4 nghiệm trong đó có 2 cặp nghiệm là số đối của nhau.
Mà x1<x2<x3<x4→{x1=−x4x2=−x3x1<x2<x3<x4→{x1=−x4x2=−x3
x4−x3=x3−x2→x4=3x3x4−x3=x3−x2→x4=3x3
TT: x1=3x2x1=3x2
→x1.x4=9x2.x3→t1=9t2→x1.x4=9x2.x3→t1=9t2 ( với t1;t2t1;t2 là 2 nghiệm của pt(**))
Đến đây thay vào (*) bên trên ta được hệ:
⟺{9t22=2m−15t2=m⟺{9t22=2m−15t2=m
→9(2)2−25(1)⟺9m2−50m+25=0⟺(9m−5)(m−5)=0→9(2)2−25(1)⟺9m2−50m+25=0⟺(9m−5)(m−5)=0
⟺m=59⟺m=59 v m=5m=5 (cả 2 đều thỏa mãn)
∙∙ Với m=59⟺x=±1m=59⟺x=±1 v x=±13x=±13
∙∙ Với m=5⟺x=±1m=5⟺x=±1 v x=±3
Bài1: Tìm tất cả giá trị của tham số m để phương trình sau có 2 nghiệm phân biệt
a) ( m-3)x2+ 2(2m-5)x+5m-11=0
b) mx2 +(4m+1)+5m+2=0
Bài 2: Tìm tất cả giá trị của tham số m để phương trình có 2 nghiệm cùng dấu
a) x2+mx+m-3/4 =0
b) (m-2)x2+2(2m-3)x+5m-6=0
bạn thêm đấu bằng vào kết quả hộ mình nhé. sửa lại \(2\le m\le4\)
bài 1: bạn chỉ cần giải đen ta làm sao cho nó >=0 .Mình l;àm mẫu câu a nhé:
a) để phương trình có 2 no phân biệt thì \(\Delta\)>=0
\(\Leftrightarrow\left(2m-5\right)^2-\left(m-3\right)\left(5m-11\right)\) >=0
\(\Leftrightarrow-m^{^{ }2}+6m-8\ge0\)
\(\Leftrightarrow2< m< 4\)
vậy 2<m<4 thỏa mãn đề bài