cho I = Limx→0 2(√3x+1 -1)/x và J = limx→-1 x2-x-2 / x+ 1. tính I-J
X
Cho I = lim x → 0 2 x + 1 − 1 x và J = lim x → 1 x 2 + x − 2 x − 1 . Tính I+J
A. 3
B. 5
C. 4
D. 2
Cho I = lim x → 0 2 x + 1 − 1 x và J = lim x → 1 x 2 + x − 2 x − 1 . Tính I+J
A. 3
B. 5
C. 4
D. 2
Cho I = lim x → 0 2 x + 1 − 1 x và J = lim x → 1 x 2 + x − 2 x − 1 . Tính I + J
A. 3.
B. 5
C. 4
D. 2.
Đáp án C
Cách 1: Tư duy tự luận
I = lim x → 0 2 x + 1 − 1 x = lim x → 0 2 x + 1 − 1 2 x + 1 + 1 x 2 x + 1 + 1 = lim x → 0 2 2 x + 1 + 1 = 1
J = lim x → 1 x 2 + x − 2 x − 1 = lim x → 1 x − 1 x + 2 x − 1 = lim x → 1 x + 2 = 3
Vậy I + J = 1 + 3 = 4 .
Cách 2: Sử dụng máy tính cầm tay casio (hoặc vinacal)
vậy I = lim x → 0 2 x + 1 − 1 x = 1 và J = lim x → 1 x 2 + x − 2 x − 1 = 3 . suy ra I + J = 4
Cho lim x → 1 f ( x ) + 1 x - 1 = - 1 . Tính I = lim x → 1 ( x 2 + x ) f ( x ) + 2 x - 1
A. 5
B. -4
C. 4
D. -5
Tính giới hạn I = l i m x → + ∞ x + 1 - x 2 - x + 2
A. I = 3 2
B. I = 1 2
C. I = 17 11
D. I = 46 31
Bài 1 tìm các giới hạn sau :
a, lim 2x²-3x-2/x-2
(limx->2)
b, lim x³-3x²+5x-3/x²-1
(limx->1)
c, limx²+2x/x²+4x+4
(limx->2)
d, limx³-x²-x+1/x²-3x+2
(lim x->1)
e, limx³-5x²+3x+9/x4-8x²-9
(lim x->1)
f, lim x4-1/x³-2x²+3
(limx->-1)
g, limx²+2x-3/2x²-x-1
(limx->1)
h,lim x³-3x+2/4-x²
(lim x->-2)
i, lim4x6-5x5+1/x²-1
(lim x->1)
k, lim x mũ m -1/ x mũ n -1
(lim x->1)m, n thuộc N
Bài 1 tìm các giới hạn sau :
a, lim 2x²-3x-2/x-2
(limx->2)
b, lim x³-3x²+5x-3/x²-1
(limx->1)
c, limx²+2x/x²+4x+4
(limx->2)
d, limx³-x²-x+1/x²-3x+2
(lim x->1)
e, limx³-5x²+3x+9/x4-8x²-9
(lim x->1)
f, lim x4-1/x³-2x²+3
(limx->-1)
g, limx²+2x-3/2x²-x-1
(limx->1)
h,lim x³-3x+2/4-x²
(lim x->-2)
i, lim4x6-5x5+1/x²-1
(lim x->1)
k, lim x mũ m -1/ x mũ n -1
(lim x->1)m, n thuộc N
\(A=\lim\limits_{x\rightarrow2}\frac{\left(x-2\right)\left(2x-1\right)}{x-2}=\lim\limits_{x\rightarrow2}\left(2x-1\right)=3\)
\(B=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(x^2-2x+3\right)}{\left(x-1\right)\left(x+1\right)}=\lim\limits_{x\rightarrow1}\frac{x^2-2x+3}{x+1}=\frac{1-2+3}{1+1}=1\)
\(C=\lim\limits_{x\rightarrow2}\frac{x^2+2x}{x^2+4x+4}=\frac{4+4}{4+8+4}=\frac{1}{2}\)
\(D=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(x^2-1\right)}{\left(x-1\right)\left(x-2\right)}=\lim\limits_{x\rightarrow1}\frac{x^2-1}{x-2}=\frac{0}{-1}=0\)
\(E=\lim\limits_{x\rightarrow1}\frac{x^3-5x^2+3x+9}{x^4-8x^4-9}=\frac{1-5+3+9}{1-8-9}=-\frac{1}{2}\)
\(F=\lim\limits_{x\rightarrow-1}\frac{\left(x+1\right)\left(x-1\right)\left(x^2+1\right)}{\left(x+1\right)\left(x^2-3x+3\right)}=\lim\limits_{x\rightarrow-1}\frac{\left(x-1\right)\left(x^2+1\right)}{x^2-3x+3}=\frac{-2.2}{1+3+3}=-\frac{2}{5}\)
\(G=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(x+3\right)}{\left(x-1\right)\left(2x+1\right)}=\lim\limits_{x\rightarrow1}\frac{x+3}{2x+1}=\frac{4}{3}\)
\(H=\lim\limits_{x\rightarrow-2}\frac{\left(x+2\right)\left(x-1\right)^2}{\left(2-x\right)\left(x+2\right)}=\lim\limits_{x\rightarrow-2}\frac{\left(x-1\right)^2}{2-x}=\frac{9}{4}\)
\(I=\lim\limits_{x\rightarrow1}\frac{4x^6-5x^5+1}{x^2-1}=\lim\limits_{x\rightarrow1}\frac{24x^5-25x^4}{2x}=\frac{24-25}{2}=-\frac{1}{2}\)
\(K=\lim\limits_{x\rightarrow1}\frac{x^m-1}{x^n-1}=\lim\limits_{x\rightarrow1}\frac{mx^{m-1}}{nx^{n-1}}=\frac{m}{n}\)
Câu 1:
a, limx→-∞ \(\dfrac{x+\sqrt{x^2+2}}{\sqrt{8x^2+5x+2}}\)
b, limx→-∞ \(\dfrac{\sqrt{x^2+2x}+3x}{\sqrt{4x^2+1}-x+2}\)
c, limx→-∞ \(\dfrac{x+\sqrt{x^2+x}}{3x-\sqrt{x^2+1}}\)
d, limx→-∞ \(\dfrac{\sqrt{x^2+x+2}+3x}{\sqrt{4x^2+1}-x+1}\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{x+\sqrt{x^2+2}}{\sqrt{8x^2+5x+2}}=\dfrac{1+\sqrt{1+\dfrac{2}{x^2}}}{\sqrt{8+\dfrac{5}{x}+\dfrac{2}{x^2}}}=\dfrac{1+\sqrt{1}}{\sqrt{8}}=\dfrac{\sqrt{2}}{2}\).
Nếu lim x → 1 f ( x ) - 5 x - 1 = 2 và lim x → 1 g ( x ) - 1 x - 1 = 3 thì lim x → 1 f ( x ) . g ( x ) + 4 - 3 x - 1 bằng
A. 17 6
B. 23 7
C.7
D.17