Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
⁀ɪdoʟ ๖God乡ツDεʋї༉
Xem chi tiết
Hồng Phúc
12 tháng 12 2020 lúc 12:04

ĐKXĐ: \(x=\pm3\)

Nếu \(x=3\), phương trình tương đương 

\(x^3+\sqrt{x^2-9}-\sqrt{9-x^2}-27=0\)

\(\Leftrightarrow0=0\)

\(\Rightarrow x=3\) là nghiệm của phương trình 

Nếu \(x=-3\), phương trình tương đương

\(x^3+\sqrt{x^2-9}-\sqrt{9-x^2}-27=0\)

\(\Leftrightarrow-54=0\)

\(\Rightarrow x=-3\) không phải là nghiệm của phương trình

Vậy ...

Julian Edward
Xem chi tiết
Akai Haruma
23 tháng 3 2019 lúc 22:52

Lời giải:

a) Thay $m=-9$ vào PT:

\(x^2-9x-10=0\)

\(\Leftrightarrow x^2-10x+x-10=0\)

\(\Leftrightarrow x(x-10)+(x-10)=0\Leftrightarrow (x+1)(x-10)=0\)

\(\Rightarrow \left[\begin{matrix} x=-1\\ x=10\end{matrix}\right.\)

b)

Trước tiên để PT có 2 nghiệm pb $x_1,x_2$ thì:

\(\Delta=81-4(m-1)>0\Leftrightarrow m< \frac{85}{4}\)

Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=9\\ x_1x_2=m-1\end{matrix}\right.(*)\)

PT có nghiệm này gấp đôi nghiệm kia, tức là \(x_1=2x_2\). Thay vào $(*)$

\(\Rightarrow \left\{\begin{matrix} 3x_2=9\\ 2x_2^2=m-1\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x_2=3\\ 2x_2^2=m-1\end{matrix}\right.\Rightarrow m-1=2.3^2=18\Rightarrow m=19\) (thỏa mãn)

Vậy.............

Dương Thị Trà My
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
20 tháng 9 2023 lúc 23:29

Ta có : P(x) = \({x^4} + {x^2} - 9x - 9\)

Thay x = 1 vào ta có : P(1) =\({x^3} + {x^2} - 9x - 9 = {1^3} + {1^2} - 9.1 - 9 =  - 16\)

Thay x = -1 vào ta có : P(-1) = \({x^3} + {x^2} - 9x - 9 = {( - 1)^3} + {( - 1)^2} - 9.( - 1) - 9 = 0\)

Vậy x = -1 là nghiệm của P(x)

Võ Nhật Minh
Xem chi tiết
Hồ Thị Hoài An
15 tháng 11 2015 lúc 21:26

Bình phương hai vế đi bạn :))
Bài này bình phương được đấy ^^
Không liên quan nhưng tick cho mình nhé ^^

Smile
15 tháng 11 2015 lúc 21:37

kết quả : x = 0; x = 9 nha

Nguyễn Minh Anh
Xem chi tiết
KAl(SO4)2·12H2O
24 tháng 11 2019 lúc 16:08

\(\left(x^2-3x+9\right)\left(x^2+5x+9\right)=9x^2\)

\(\Leftrightarrow x^4+5x^3+9x^2-3x^3-15x^2-27x+9x^2+45x+81=9x^2\)

\(\Leftrightarrow x^4+2x^3+3x^2+18x+81=9x^2\)

\(\Leftrightarrow x^4+2x^3+3x^2+18x+81-9x^2=0\)

\(\Leftrightarrow x^4+2x^2-6x^2+18x+81=0\)

\(\Leftrightarrow\left(x^3-x^2-3x+27\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(x^2-4x+9\right)\left(x+3\right)\left(x+3\right)=0\)

Vì \(x^2-4x+9\ne0\) nên: 

\(\Rightarrow x+3=0\)

     \(x=-3\)

Vậy: nghiệm phương trình là: {-3}

Khách vãng lai đã xóa
Trang Đỗ
Xem chi tiết
Trần Thanh Phương
1 tháng 2 2019 lúc 19:27

Câu 1 : D

Câu 2 : A

Câu 3 : B

Câu 4 : A

Câu 5 : C

Nguyễn Hoàng
1 tháng 2 2019 lúc 19:29

lớp 8 thì mấy bài này dễ thôi

Dương Thị Thu Hiền
Xem chi tiết
Nguyễn Hoàng Minh
27 tháng 11 2021 lúc 22:24

\(a,ĐK:1\le x\le3\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a\\\sqrt{3-x}=b\end{matrix}\right.\left(a,b\ge0\right)\)

\(PT\Leftrightarrow a+b-ab=1\Leftrightarrow a+b-ab-1=0\\ \Leftrightarrow\left(a-1\right)\left(1-b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=1\\3-x=1\end{matrix}\right.\Leftrightarrow x=2\left(tm\right)\)

\(b,ĐK:0\le x\le9\\ PT\Leftrightarrow9+2\sqrt{x\left(9-x\right)}=-x^2+9x+9\\ \Leftrightarrow2\sqrt{-x^2+9x}-\left(-x^2+9x\right)=0\\ \Leftrightarrow\sqrt{-x^2+9x}\left(2-\sqrt{-x^2+9x}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}-x^2+9x=0\\\sqrt{-x^2+9x}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\\x^2-9x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(n\right)\\x=9\left(n\right)\\x=\dfrac{9+\sqrt{65}}{2}\left(n\right)\\x=\dfrac{9-\sqrt{65}}{2}\left(n\right)\end{matrix}\right.\)

 

Thủy Lam
Xem chi tiết
Lê Nguyên Bách
28 tháng 3 2015 lúc 14:53

Để F(x) có nghiệm <=> x^10 - 9x^9 + ... + 9x^2 - 9x +8 = 0

<=> (x^10 - x^9) - (8x^9 - 8x^8) + (x^8 - x^7) - ... + (x^2 - x) - (8x - 8) = 0

<=> x^9(x - 1) - 8x^8(x - 1) + ... + x(x - 1) - 8(x - 1) = 0

<=> (x^9 - 8x^8 + ... + x - 8)(x - 1) = 0

<=> (  (x^9 - 8x^8) + (x^7 - 8x^6) + ... + (x - 8)  )(x - 1) = 0

<=> (x^8 + x^6 + ... + 1)(x - 8)(x - 1) = 0

Có nghiệm là 8 và 1