Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thế Hiếu
Xem chi tiết
Akai Haruma
4 tháng 4 2021 lúc 2:58

Bạn coi lại đề xem có sai không chứ nghiệm giải ra xấu cực. Và phương trình không rút gọn hết nghe cũng rất vô lý.

dia fic
Xem chi tiết
HT2k02
5 tháng 4 2021 lúc 21:38

undefined

Phan Thị Hà Vy
Xem chi tiết
Baek Hyun
Xem chi tiết
Đào Thu Hoà
18 tháng 6 2019 lúc 20:05

\(2x^3-x^2+\sqrt[3]{2x^3-3x+1}=3x+1+\sqrt[3]{x^2+2}.\)

\(\Leftrightarrow\left(2x^3-3x+1\right)-\left(x^2+2\right)+\sqrt[3]{2x^2-3x+1}-\sqrt[3]{x^2+2}=0\)(*)

Đặt \(\sqrt[3]{2x^3-3x+1}=a\Rightarrow2x^3-3x+1=a^3\)\(\sqrt[3]{x^2+2}=b\Rightarrow b^3=x^2+2\)

Khi đó: (*) \(\Leftrightarrow a^3-b^3+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)

\(\Rightarrow a-b=0\)( Vì: \(a^2+ab+b^2+1=\left(a+\frac{b}{2}\right)^2+\frac{3}{4}b^2+1>0\))

\(\Leftrightarrow a=b\)hay \(\sqrt[3]{2x^3-3x+1}=\sqrt[3]{x^2+2}\)

\(\Leftrightarrow2x^3-3x+1=x^2+2\Leftrightarrow\left(2x^3+x^2\right)-\left(2x^2+x\right)-\left(2x+1\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(x^2-x-1\right)=0\Leftrightarrow\orbr{\begin{cases}2x+1=0\left(1\right)\\x^2-x-1=0\left(2\right)\end{cases}}\)

Giải (1)ta được \(x=-\frac{1}{2}\)

Giải (2) ta có: \(x^2-x-1=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2=\frac{5}{4}\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{2}=\frac{\sqrt{5}}{2}\\x-\frac{1}{2}=-\frac{\sqrt{5}}{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{\sqrt{5}+1}{2}\\x=\frac{-\sqrt{5}+1}{2}\end{cases}}\)

Vậy tập nghiệm của phương trình đã cho là: \(S=\left\{-\frac{1}{2};\frac{\sqrt{5}+1}{2};\frac{-\sqrt{5}+1}{2}\right\}.\)

Xem chi tiết
Nguyễn Việt Lâm
20 tháng 8 2021 lúc 21:23

a.

ĐKXĐ: \(x^2+2x-1\ge0\)

\(x^2+2x-1+2\left(x-1\right)\sqrt{x^2+2x-1}-4x=0\)

Đặt \(\sqrt{x^2+2x-1}=t\ge0\)

\(\Rightarrow t^2+2\left(x-1\right)t-4x=0\)

\(\Delta'=\left(x-1\right)^2+4x=\left(x+1\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=1-x+x+1=2\\t=1-x-x-1=-2x\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+2x-1}=2\\\sqrt{x^2+2x-1}=-2x\left(x\le0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x-5=0\\3x^2-2x+1=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow x=-1\pm\sqrt{6}\)

Nguyễn Việt Lâm
20 tháng 8 2021 lúc 21:26

b.

ĐKXĐ: \(x\ge\dfrac{1}{5}\)

\(2x^2+x-3+2x-\sqrt{5x-1}+2-\sqrt[3]{9-x}=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)+\dfrac{\left(x-1\right)\left(4x-1\right)}{2x+\sqrt[]{5x-1}}+\dfrac{x-1}{4+2\sqrt[3]{9-x}+\sqrt[3]{\left(9-x\right)^2}}=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+3+\dfrac{4x-1}{2x+\sqrt[]{5x-1}}+\dfrac{1}{4+2\sqrt[3]{9-x}+\sqrt[3]{\left(9-x\right)^2}}\right)=0\)

\(\Leftrightarrow x=1\) (ngoặc đằng sau luôn dương)

Trần Minh Quân
Xem chi tiết
Phong
26 tháng 8 lúc 14:46

`\sqrt{2x+3}+\sqrt{x+1}=3x-2+2\sqrt{2x^2+5x+3}` (ĐK: `x>=-1)`

`<=>\sqrt{2x+3}+\sqrt{x+1}=3x-2+2\sqrt{2x+3}*\sqrt{x+1}`

`<=>\sqrt{2x+3}+\sqrt{x+1}=(2x+3)+2\sqrt{2x+3}*\sqrt{x+1}+(x+1)-6`

`<=>\sqrt{2x+3}+\sqrt{x+1}=(\sqrt{2x+3}+\sqrt{x+1})^2-6`

Đặt: `t=\sqrt{2x+3}+\sqrt{x+1}(t>=0)` ta được pt:

`t=t^2-6`

`<=>t^2-t-6=0`

`<=>(t-3)(t+2)=0`

`<=>t=3(tm)` hoặc `t=-2(L)`

Suy ra: `\sqrt{2x+3}+\sqrt{x+1}=3`

`<=>2x+3+2\sqrt{(2x+3)(x+1)}+x+1=9`

`<=>2\sqrt{2x^2+5x+3}=5-3x`

`<=>4(2x^2+5x+3)=(5-3x)^2=9x^2-30x+25`

`<=>8x^2+20x+12=9x^2-30x+25`

`<=>x^2-50x+13=0`

`<=>x=25-6\sqrt{17}(tm)` và `x=25+6\sqrt{17}(tm)`

Vậy: `...`

Mai Thắng
Xem chi tiết

image.png

Đặng Tiến Thắng
Xem chi tiết
callme_lee06
Xem chi tiết