Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Trần Phát
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 1 lúc 20:25

\(\int\left(3x^2-2x-4\right)dx=x^3-x^2-4x+C\)

\(\int\left(sin3x-cos4x\right)dx=-\dfrac{1}{3}cos3x-\dfrac{1}{4}sin4x+C\)

\(\int\left(e^{-3x}-4^x\right)dx=-\dfrac{1}{3}e^{-3x}-\dfrac{4^x}{ln4}+C\)

d. \(I=\int lnxdx\)

Đặt \(\left\{{}\begin{matrix}u=lnx\\dv=dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=x\end{matrix}\right.\)

\(\Rightarrow u=x.lnx-\int dx=x.lnx-x+C\)

e. Đặt \(\left\{{}\begin{matrix}u=x\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=e^x\end{matrix}\right.\)

\(\Rightarrow I=x.e^x-\int e^xdx=x.e^x-e^x+C\)

f.

Đặt \(\left\{{}\begin{matrix}u=x+1\\dv=sinxdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=-cosx\end{matrix}\right.\)

\(\Rightarrow I=-\left(x+1\right)cosx+\int cosxdx=-\left(x+1\right)cosx+sinx+C\)

g.

Đặt \(\left\{{}\begin{matrix}u=lnx\\dv=xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=\dfrac{1}{2}x^2\end{matrix}\right.\)

\(\Rightarrow I=\dfrac{1}{2}x^2.lnx-\dfrac{1}{2}\int xdx=\dfrac{1}{2}x^2.lnx-\dfrac{1}{4}x^2+C\)

Nguyễn Hải Vân
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 11 2021 lúc 18:23

a. \(\int\dfrac{x^3}{x-2}dx=\int\left(x^2+2x+4+\dfrac{8}{x-2}\right)dx=\dfrac{1}{3}x^3+x^2+4x+8ln\left|x-2\right|+C\)

b. \(\int\dfrac{dx}{x\sqrt{x^2+1}}=\int\dfrac{xdx}{x^2\sqrt{x^2+1}}\)

Đặt \(\sqrt{x^2+1}=u\Rightarrow x^2=u^2-1\Rightarrow xdx=udu\)

\(I=\int\dfrac{udu}{\left(u^2-1\right)u}=\int\dfrac{du}{u^2-1}=\dfrac{1}{2}\int\left(\dfrac{1}{u-1}-\dfrac{1}{u+1}\right)du=\dfrac{1}{2}ln\left|\dfrac{u-1}{u+1}\right|+C\)

\(=\dfrac{1}{2}ln\left|\dfrac{\sqrt{x^2+1}-1}{\sqrt{x^2+1}+1}\right|+C\)

c. \(\int\left(\dfrac{5}{x}+\sqrt{x^3}\right)dx=\int\left(\dfrac{5}{x}+x^{\dfrac{3}{2}}\right)dx=5ln\left|x\right|+\dfrac{2}{5}\sqrt{x^5}+C\)

d. \(\int\dfrac{x\sqrt{x}+\sqrt{x}}{x^2}dx=\int\left(x^{-\dfrac{1}{2}}+x^{-\dfrac{3}{2}}\right)dx=2\sqrt{x}-\dfrac{1}{2\sqrt{x}}+C\)

e. \(\int\dfrac{dx}{\sqrt{1-x^2}}=arcsin\left(x\right)+C\)

Mai Linh
Xem chi tiết
Hoa Thiên Lý
22 tháng 1 2016 lúc 16:32

Ta có :

\(\frac{3x+2}{x^2+2x-3}=\frac{E\left(2x+2\right)+D}{x^2+2x-3}=\frac{2E+D+2E}{x^2+2x-3}\)

Đồng nhất hệ số hai tử sốta có hệ phương trình 

\(\begin{cases}2E=3\\D+2E=2\end{cases}\) \(\Rightarrow\begin{cases}E=\frac{3}{2}\\D=-1\end{cases}\)

\(\Rightarrow\) \(\frac{3x+2}{x^2+2x-3}=\frac{\frac{3}{2}\left(2x+2\right)}{x^2+2x-3}-\frac{1}{x^2+2x-3}\)

Vậy :

\(\int\frac{3x+2}{x^2+2x-3}dx=\frac{3}{2}\int\frac{d\left(x^2+2x-3\right)}{x^2+2x-3}+\int\frac{1}{x^2+2x-3}dx\)\(=\frac{3}{2}\ln\left|x^2+2x-3\right|+J\left(1\right)\)

Tính :

\(J=\int\frac{1}{x^2+2x-3}dx=\frac{1}{4}\left(\int\frac{1}{x-1}dx-\int\frac{1}{x+3}dx\right)=\frac{1}{4}\ln\left|x-1\right|-\ln\left|x+3\right|=\frac{1}{4}\ln\left|\frac{x-1}{x+3}+C\right|\)

Do đó :  \(\int\frac{3x+2}{x^2+2x-3}dx=\frac{3}{2}\ln\left|x^2+2x-3\right|+\frac{1}{4}\ln\left|\frac{x-1}{x+3}\right|+C\)

 

Hoa Thiên Lý
22 tháng 1 2016 lúc 16:45

b) Ta có :

\(\frac{2x-3}{x^2+4x+4}=\frac{E\left(2x+4\right)+D}{x^2+4x+4}=\frac{2Ex+D+4E}{x^2+4x+4}\)

Đồng nhất hệ số  hai tử số :

Ta có hệ : \(\Leftrightarrow\)\(\begin{cases}2E=2\\D+4E=-3\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}E=1\\D=-7\end{cases}\)

Suy ra :

\(\frac{2x-3}{x^2+4x+4}=\frac{2x+4}{x^2+4x+4}-\frac{7}{x^2+4x+4}\)

Vậy : \(\int\frac{2x-3}{x^2+4x+4}dx=\int\frac{2x+4}{x^2+4x+4}dx-7\int\frac{1}{\left(x+2\right)^2}dx=\ln\left|x^2+4x+4\right|+\frac{7}{x+2}+C\)

Nguyễn Văn Toàn
22 tháng 1 2016 lúc 17:39

Nguyên hàm-Tích phân cơ bản

Guyo
Xem chi tiết
Nguyễn Thái Bình
18 tháng 1 2016 lúc 16:34

a)

\(\frac{1}{x^2-4x+4}dx=\frac{1}{\left(x-2\right)^2}dx=-\frac{1}{x-2}+C\)

 

b) \(\frac{1}{9x^2-12x+4}dx=\frac{1}{9\left(x-\frac{2}{3}\right)^2}dx=\frac{1}{9}.\frac{1}{\left(x-\frac{2}{3}\right)^2}dx=\frac{1}{9}.\frac{1}{x-\frac{2}{3}}=\frac{1}{9x-6}+C\)

Nguyễn Hòa Bình
Xem chi tiết
Nguyễn Thái Bình
18 tháng 1 2016 lúc 21:43

a)

\(\int\frac{2\left(x_{ }+1\right)}{x^2+2x_{ }-3}dx=\int\frac{2x+2}{x^2+2x-3}dx\)

\(=\int\frac{d\left(x^2+2x-3\right)}{x^2+2x-3}=ln\left|x^2+2x-3\right|+C\)

Nguyễn Thái Bình
18 tháng 1 2016 lúc 21:50

b)\(\int\frac{2\left(x-2\right)dx}{x^2-4x+3}=\int\frac{2x-4dx}{x^2-4x+3}=\int\frac{d\left(x^2-4x+3\right)}{x^2-4x+3}=ln\left|x^2-4x+3\right|+C\)

nanako
Xem chi tiết
Bắc Băng Dương
Xem chi tiết
Đỗ Hạnh Quyên
18 tháng 3 2016 lúc 21:49

a) Đặt \(1+\ln x=t\)  khi đó \(\frac{dx}{x}=dt\)  và do đó 

\(I_1=\int\sqrt{t}dt=\frac{2}{3}t^{\frac{3}{2}}+C=\frac{2}{3}\sqrt{\left(1+\ln x\right)^3}+C\)

 

b) Đặt \(\sqrt[4]{e^x+1}=t\)  khi đó \(e^x+1=t^4\Rightarrow e^x=t^4-1\) và \(e^xdx=4t^3dt\)  , \(e^{2x}dx=e^x.e^xdx=\left(t^4-1\right)4t^3dt\) 

Do đó :

\(I_2=4\int\frac{t^3\left(t^4-1\right)}{t}dt=4\int\left(t^6-t^2\right)dt=4\left[\frac{t^7}{7}-\frac{t^3}{3}\right]+C\)

    \(=4\left[\frac{1}{7}\sqrt[4]{\left(e^x+1\right)^7}-\frac{1}{3}\sqrt[4]{\left(e^x+1\right)^3}\right]+C\)

 

c) Lưu ý rằng \(x^2dx=\frac{1}{3}d\left(x^3+C\right)\) do đó :

\(I_3=\int x^2e^{x^{3+6}dx}=\frac{1}{3}\int e^{x^{3+6}}d\left(x^3+6\right)=\frac{1}{3}e^{x^{3+6}}+C\)

 

Trương Thị Quỳnh
29 tháng 9 2017 lúc 15:49

C

Nguyễn Minh Ngọc
8 tháng 10 2017 lúc 19:49

8 hệ

Thiên An
Xem chi tiết
Bắc Băng Dương
23 tháng 1 2016 lúc 9:29

Ta biến đổi f(x) về dạng : 

\(f\left(x\right)=\frac{\sin x.\sin\left(x+\frac{\pi}{4}\right)+\cos x.\cos\left(x+\frac{\pi}{4}\right)}{\cos x.\cos\left(x+\frac{\pi}{4}\right)}-1=\frac{\cos\frac{\pi}{4}}{\cos x.\cos\left(x+\frac{\pi}{4}\right)}-1\)

\(\Rightarrow F\left(x\right)=\frac{\sqrt{2}}{2}\int\frac{dx}{\cos x.\cos\left(x+\frac{\pi}{4}\right)}dx-\int dx=\frac{\sqrt{2}}{2}\int\frac{dx}{\cos x.\cos\left(x+\frac{\pi}{4}\right)}dx-x\left(1\right)\)

Để tính \(J=\int\frac{dx}{\cos x.\cos\left(x+\frac{\pi}{4}\right)}dx\)

Ta có \(\int\frac{dx}{\cos x.\cos\left(x+\frac{\pi}{4}\right)}dx=\sqrt{2}\int\frac{1}{\cos x.\left(\cos x-\sin x\right)}dx=\sqrt{2}\int\frac{1}{\left(1-\tan x\right)}.\frac{1}{\cos^2x}dx\)

\(=-\sqrt{2}\int\frac{d\left(1-\tan x\right)}{1-\tan x}=\sqrt{2}\ln\left|1-\tan x\right|+C\)

Thiên An
Xem chi tiết
Nguyễn Minh Hằng
23 tháng 1 2016 lúc 10:59

Biến đổi :

\(4\sin x+3\cos x=A\left(\sin x+2\cos x\right)+B\left(\cos x-2\sin x\right)=\left(A-2B\right)\sin x+\left(2A+B\right)\cos x\)

Đồng nhất hệ số hai tử số, ta có :

\(\begin{cases}A-2B=4\\2A+B=3\end{cases}\)\(\Leftrightarrow\begin{cases}A=2\\B=-1\end{cases}\)

Khi đó \(f\left(x\right)=\frac{2\left(\left(\sin x+2\cos x\right)\right)-\left(\left(\sin x-2\cos x\right)\right)}{\left(\sin x+2\cos x\right)}=2-\frac{\cos x-2\sin x}{\sin x+2\cos x}\)

Do đó, 

\(F\left(x\right)=\int f\left(x\right)dx=\int\left(2-\frac{\cos x-2\sin x}{\sin x+2\cos x}\right)dx=2\int dx-\int\frac{\left(\cos x-2\sin x\right)dx}{\sin x+2\cos x}=2x-\ln\left|\sin x+2\cos x\right|+C\)

Phạm Phương Anh
23 tháng 1 2016 lúc 11:07

oe