Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vũ phát đạt
Xem chi tiết
Akai Haruma
21 tháng 7 lúc 18:18

Lời giải:
$a^4+b^4+c^4=(a^2+b^2+c^2)^2-2(a^2b^2+b^2c^2+c^2a^2)$

$=[(a+b+c)-2(ab+bc+ac)]^2-2(a^2b^2+b^2c^2+c^2a^2)$

$=[-2(ab+bc+ac)]^2-2(a^2b^2+b^2c^2+c^2a^2)$

$=4(ab+bc+ac)^2-2[(ab+bc+ac)^2-2abc(a+b+c)]$

$=4(ab+bc+ac)^2-2[(ab+bc+ac)^2]=2(ab+bc+ac)^2$
Ta có đpcm.

Thanh Tu Nguyen
Xem chi tiết
Nguyễn Đức Trí
27 tháng 7 2023 lúc 0:56

Ta có :

\(\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=\left[-2\left(ab+bc+ca\right)\right]^2\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\right)\left(1\right)\)

\(\Leftrightarrow a^4+b^4+c^4=4\left(a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right)-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\left(2\right)\) (vì \(a+b+c=0\))

\(\left(1\right)+\left(2\right)\Rightarrow2\left(a^4+b^4+c^4\right)=4\left(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\right)\)

\(\Rightarrow\left(a^4+b^4+c^4\right)=2\left(ab+bc+ca\right)^2\)

\(\Rightarrow dpcm\)

Minh Duy Cù
Xem chi tiết
Y
6 tháng 5 2019 lúc 21:40

+ a + b + c = 0 \(\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

+ \(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(=\left[-2\left(ab+bc+ca\right)\right]^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(=4\left(ab+bc+ca\right)^2-2\left[\left(ab+bc+ca\right)^2-2\left(ab^2c+a^2bc+abc^2\right)\right]\)

\(=2\left(ab+bc+ca\right)^2+4\left(ab^2c+abc^2+a^2bc\right)\)

\(=2\left(ab+bc+ca\right)^2+4abc\left(a+b+c\right)\)

\(=2\left(ab+bc+ca\right)^2\)

Đỗ Thị Phương Thảo
Xem chi tiết
Trần Nguyễn Bảo Quyên
22 tháng 7 2018 lúc 10:58

Ta có​ : \(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=0\)

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)

\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)\)

Bình phương hai vế , ta được :

\(\left(a^2+b^2+c^2\right)^2=\left[-2\left(ab+bc+ac\right)\right]^2\)

\(\Rightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=4\left(a^2b^2+a^2c^2+b^2c^2+2a^2bc+2ab^2c+2abc^2\right)\) \(\left(1\right)\)

\(\Rightarrow a^4+b^4+c^4=4\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right]-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(\Rightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\) ( vì \(a+b+c=0\) ) \(\left(2\right)\)

Từ​ \(\left(1\right),\left(2\right)\):

\(2\left(a^4+b^4+c^4\right)=4\left(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\right)\)

\(\Rightarrow\left(a^4+b^4+c^4\right)=2\left(ab+bc+ca\right)^2\)

Nguyễn Tuấn Kiệt
Xem chi tiết
Chu Tuấn Minh
16 tháng 11 2019 lúc 20:42

Ta có : a + b + c = 0

( a + b + c )\(^2\) = 0

\(a^2+b^2+c^2+2ab+2bc+2ca=0\)

Nên : \(a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

\(\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ca\right)^2\)

\(a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4\left(ab+bc+ca\right)^2\)

\(a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4\left(a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc\right)\)

\(a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2+8ab^2c+8abc^2+8a^2bc\)

\(a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2+8abc\left(b+c+a\right)\)

\(a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2\)

Lại có : \(2\left(ab+bc+ca\right)^2\)

\(=2\left(a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc\right)\)

\(=2a^2b^2+2b^2c^2+2c^2a^2+4ab^2c+4abc^2+4a^2bc\)

\(=2a^2b^2+2b^2c^2+2c^2a^2+4abc\left(b+c+a\right)\)

\(=2a^2b^2+2b^2c^2+2c^2a^2\)

Vì : \(2a^2b^2+2b^2c^2+2c^2a^2=2a^2b^2+2b^2c^2=2c^2a^2\)

Vậy \(a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)

Khách vãng lai đã xóa
Phạm Bảo Ngọc
Xem chi tiết
Dũng Lê Trí
23 tháng 7 2017 lúc 9:55

Ta có : \(a+b+c=0\Leftrightarrow b+c=-a\)

\(\Rightarrow\left(b+c\right)^2=a^2\)(1)

\(\Rightarrow\left(a^2-b^2-c^2\right)^2=4b^2c^2\)

\(\Leftrightarrow a^4+b^4+c^4-2\left(a^2b^2-b^2c^2+2c^2a^2\right)=4b^2c^2\)

\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

Từ (1) ta có : 

\(a^4+b^4+c^4=2\left(ab+bc+ac\right)^2-4abc\left(a+b+c\right)\)

\(=2\left(ab+bc+ca\right)^2\)

Vì a + b + c = 0 

Ta có đpcm

nhung
23 tháng 7 2017 lúc 9:57

  +) a^4 + b^4 + c^4 = ( a + b + c ) ^4

                    = 0^4 =0

 +) 2( ab + bc + ca ) ^2 = 2( abc (a + b +c ))^2

                       =2(abc*0)^2

                        =0

vậy a^4+b^4+c^4=2(ab+bc+ca)^2(=0)

Đinh Đức Hùng
23 tháng 7 2017 lúc 10:01

\(a+b+c=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=0\)

\(\Leftrightarrow a^2+b^2+c^2=-2ab-2bc-2ac\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=\left(2ab+2bc+2ac\right)^2\)

\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2=4\left(ab+bc+ac\right)^2\)

\(\Leftrightarrow a^4+b^4+c^4=4\left(ab+bc+ac\right)^2-2a^2b^2-2a^2c^2-2b^2c^2\)

Ta có : \(2\left(ab+bc+ac\right)^2-2a^2b^2-2a^2c^2-2b^2c^2\)

\(=2\left(a^2b^2+a^2c^2+b^2c^2+2ab^2c+2a^2bc+2abc^2\right)-2a^2b^2-2a^2c^2-2b^2c^2\)

\(=-2abc\left(a+b+c\right)=0\)

Do đó \(4\left(ab+bc+ac\right)^2-2a^2b^2-2a^2c^2-2b^2c^2=2\left(ab+bc+ac\right)^2\)

Hay \(a^4+b^4+c^4=2\left(ab+bc+ac\right)^2\) (đpcm)

Sương Đặng
Xem chi tiết
Ngô Tấn Đạt
14 tháng 3 2018 lúc 15:50

\(\left(ab+bc+ac\right)^2=a^2b^2+b^2c^2+c^2a^2\\ \Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2\left(ab^2c+abc^2+a^2bc\right)=a^2b^2+b^2c^2+c^2a^2\\ \Leftrightarrow2\left(ab^2c+abc^2+a^2bc\right)=0\\ \Leftrightarrow abc\left(a+b+c\right)=0\left(đpcm;a+b+c=0\right)\)

Nguyễn Phương Linh
Xem chi tiết
Ghost Rider
26 tháng 5 2015 lúc 22:34

Dùng hằng đang thuc la ra~~~daif qua nen ngai viet

Nguyễn Phương Linh
26 tháng 5 2015 lúc 22:37

p giúp mk câu b đk k? Mk đọc mãi cũng không hiểu lắm câu a thì làm đk r

magic school
Xem chi tiết
Dương Lam Hàng
21 tháng 2 2018 lúc 19:41

Ta có: \(a+b+c=0\)

\(\Rightarrow a+b=-c\)

\(\Rightarrow\left(a+b\right)^2=\left(-c\right)^2\)

\(\Leftrightarrow a^2+2ab+b^2=c^2\)

\(\Rightarrow a^2+b^2-c^2=-2ab\)

\(\Rightarrow\left(a^2+b^2-c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2-b^2c^2-c^2a^2\right)\)

\(\Rightarrow a^4+b^4+c^4=\left(-2ab\right)^2-2a^2b^2+2b^2c^2+2c^2a^2=2\left(a^2b^2+b^2c^2+c^2a^2\right)\left(đpcm\right)\)