+ a + b + c = 0 \(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)
+ \(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(=\left[-2\left(ab+bc+ca\right)\right]^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(=4\left(ab+bc+ca\right)^2-2\left[\left(ab+bc+ca\right)^2-2\left(ab^2c+a^2bc+abc^2\right)\right]\)
\(=2\left(ab+bc+ca\right)^2+4\left(ab^2c+abc^2+a^2bc\right)\)
\(=2\left(ab+bc+ca\right)^2+4abc\left(a+b+c\right)\)
\(=2\left(ab+bc+ca\right)^2\)