Chứng minh rằng x-y > 0 biết rằng x > y
Cho x, y là số thực biết rằng x + y = 2
Chứng minh rằng: x . y ≤ 0
Thiếu đề. Nếu x = 1; y = 1 thì không thỏa mãn đề bài
Help me! Giúp mình với chiều nay mình kiểm tra rồi ✔
chứng minh rằng (x^2+y^2+z^2)^2=2(x^4+y^4+z^4) biết rằng x+y+z=0
Cho biết \(-1\le x;y;z\le2\) và \(x+y+z=0\). Chứng minh rằng \(x^2+y^2+z^2\le6\)
Cho biết: (2015-x)² + (y-x)² + (z-x)² = 0.
Chứng minh rằng: x=y=z=2015
Đề sai rồi em, đề đúng phải là:
\(ab\left(x^2+y^2\right)+xy\left(a^2+b^2\right)=ab\)
Vế phải em thiếu a
Cho x,y>0. Chứng minh rằng x/y+y/x≥2
\(\dfrac{x}{y}+\dfrac{y}{x}-2=\dfrac{\left(x-y\right)^2}{xy}\ge0\)
Chứng minh rằng:
a) x = y = z , biết :
x + y + z = 0 và xy + yz + zx = 0
b) (x+y)2 ≥ 4xy
Ta có: \(\left\{{}\begin{matrix}x+y+z=0\\xy+yz+zx=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(x+y+z\right)^2=0\\2\left(xy+yz+zx\right)=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x^2+y^2+z^2+2xy+2yz+2xz=0\\2xy+2yz+2xz=0\end{matrix}\right.\)
\(\Rightarrow x^2+y^2+z^2+2xy+2yz+2xz-2xy-2yz-2xz=0\)
\(\Rightarrow x^2+y^2+z^2=0\Rightarrow\left\{{}\begin{matrix}x^2\ge0\forall x\\y^2\ge0\forall y\\z^2\ge0\forall z\end{matrix}\right.\Rightarrow x^2+y^2+z^2\ge0\)
\("="\Leftrightarrow\left\{{}\begin{matrix}x^2=0\\y^2=0\\z^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\\z=0\end{matrix}\right.\)
\(\Rightarrow x=y=z=0\Rightarrow dpcm\)
\(x+y+z=0\Leftrightarrow\left(x+y+z\right)^2=0\)
\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz=x^2+y^z+z^2+0=0\)
\(\Leftrightarrow x^2+y^2+z^2=0\Leftrightarrow x=y=z=0\)
b) Bằng chứ ^^
\(\left(x+y\right)^2=x^2+2xy+y^2=4xy\)
\(\Leftrightarrow x^2-2xy+y^2=0\Leftrightarrow\left(x-y\right)^2=0\Leftrightarrow x=y\)
a, Ta có: \(\left\{{}\begin{matrix}x+y+z=0\\xy+yz+zx=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x+y+z\right)^2=0\\2\left(xy+yz+zx\right)=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\\2\left(xy+yz+zx\right)=0\end{matrix}\right.\)
\(\Rightarrow x^2+y^2+z^2=0\)
Vì \(\left\{{}\begin{matrix}x^2\ge0\\y^2\ge0\\z^2\ge0\end{matrix}\right.\) với \(\forall x,y,z\)
\(\Rightarrow x^2+y^2+z^2\ge0\)
Dấu ''='' xảy ra \(\Leftrightarrow x=y=z=0\)
Vậy ....
b, Ta có: \(\left(x-y\right)^2\ge0\)
\(\Rightarrow x^2-2xy+y^2\ge0\)
\(\Rightarrow x^2+2xy+y^2\ge4xy\)
\(\Rightarrow\left(x+y\right)^2\ge4xy\) (đpcm)
cho x,y,z>0 và x^2+y^2-z^2>0.Chứng minh rằng x+y-z>0
\(x^2+y^2-z^2>0\Rightarrow x^2+2xy+y^2-z^2>0\)
\(\Rightarrow\left(x+y\right)^2-z^2>0\)
\(\Rightarrow\left(x+y-z\right)\left(x+y+z\right)>0\)
Mà x;y;z>0 \(\Rightarrow x+y+z>0\)
\(\Rightarrow x+y-z>0\)
MN giúp mk với ạ...ks ạ...
b1 cho x-y=5 chứng minh rằng x-3y/5-2y=1
b2 cho x^2+y^2/xy=10/3;x>y>0 chứng minh rằng x+y/x-y=2
bạn cảm ơn ai vay có bn ấy có giup bn làm đau