\(x^2+y^2-z^2>0\Rightarrow x^2+2xy+y^2-z^2>0\)
\(\Rightarrow\left(x+y\right)^2-z^2>0\)
\(\Rightarrow\left(x+y-z\right)\left(x+y+z\right)>0\)
Mà x;y;z>0 \(\Rightarrow x+y+z>0\)
\(\Rightarrow x+y-z>0\)
\(x^2+y^2-z^2>0\Rightarrow x^2+2xy+y^2-z^2>0\)
\(\Rightarrow\left(x+y\right)^2-z^2>0\)
\(\Rightarrow\left(x+y-z\right)\left(x+y+z\right)>0\)
Mà x;y;z>0 \(\Rightarrow x+y+z>0\)
\(\Rightarrow x+y-z>0\)
Cho 3 số x,y,z >0 thỏa x+y+z=6 chứng minh rằng \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge6\)
Cho x,y,z >0. Chứng minh rằng:
\(\dfrac{x^3}{y^2}+\dfrac{y^3}{z^2}+\dfrac{z^3}{x^2}\ge x+y+z\)
cho x,y,z \(\ge\) 0 và x+y+z=\(\dfrac{3}{2}\) chứng minh x+2xy+4xyz\(\le\) 2
Với các số dương x,y,z. Chứng minh x^2/x+y -x/2 +y^2/y+z -y/2 +z^2/z+x -z/2 >=0
Cho x, y, z > 0 thoả mãn: \(xy+yz+zx=3xyz\). Chứng minh rằng: \(\frac{x^3}{z+x^2}+\frac{y^3}{x+y^2}+\frac{z^3}{y+z^2}\ge\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Cho x,y,z>0 thoã mãn: x3+y3+z3=1
Chứng minh rằng: \(\dfrac{x^2}{\sqrt{1-x^2}}+\dfrac{y^2}{\sqrt{1-y^2}}+\dfrac{z^2}{\sqrt{1-z^2}}\ge2\)
Chứng minh rằng với mọi x, y, z > 0 ta có: \(\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)\ge2+\dfrac{2\left(x+y+z\right)}{\sqrt[3]{xyz}}\)
Cho \(z^2+2\left(xy-xz-yz\right)=0,x+y\ne z,y\ne z\)
Chứng minh: \(\dfrac{x^2+\left(x-z\right)^2}{y^2+\left(y-z\right)^2}=\dfrac{x-z}{y-z}\)
Cho x,y,z khác 0 thỏa mãn \((1/x +1/y+1/z)^2 Chứng minh x^3+y^3+z^3=3xyz= 1/x^2 + 1/y^2 +1/z^2\)