Thu gọn đa thức sắp xếp theo lũy thừa giảm dần của biến, tìm bậc, xác định hệ số A(x) = x^4-3x^3+x+3x^4+5x^3-6x+2x^2-1
A(x)=x^4+3x^4-3x^3+5x^3+2x^2-6x+x-1
=4x^4+2x^3+2x^2-5x-1
bài 2 : cho hai đa thức
A(x)=1/4x mũ 3 + 11/3x mũ 2 - 6x - 2/3x mũ 2 + 7/4x mũ 3 +2x +3
B(x)= 2x mũ 3 + 2x mũ 2 - 3x + 9
a, thu gọn và sắp xếp đa thức A(x) theo lũy thừa giảm dần của biến
\(A\left(x\right)=\dfrac{1}{4}x^3+\dfrac{11}{3}x^2-6x-\dfrac{2}{3}x^2+\dfrac{7}{4}x^3+2x+3\)
\(=\left(\dfrac{1}{4}x^3+\dfrac{7}{4}x^3\right)+\left(\dfrac{11}{3}x^2-\dfrac{2}{3}x^2\right)-\left(6x-2x\right)+3\)
\(=2x^3+3x^2-4x+3\)
Thu gọn và sắp xếp đa thức theo lũy thừa giảm dần của biến
cho đa thức A=9-x^3+4x-2x^3+4x^2-6 và B=3+x^3+4x^2+2x^3+7x-6x^3-8x+4
1)thu gọn và sắp xếp đa thức theo lũy thừa giảm dần của biến
2)tìm nghiệm của đa thức A-B
mong mn trả lời giúp ạ
1: \(A\left(x\right)=-3x^3+4x^2+4x+3\)
\(B\left(x\right)=-3x^3+4x^2-x+7\)
2: \(A-B=0\)
=>4x+3-x+7=0
=>3x+10=0
hay x=-10/3
1)
\(A=9-x^3+4x-2x^3+4x^2-6\)
\(A=(9-6)+\left(-x^3-2x^3\right)+4x+4x^2\)
\(A=3-3x^3+4x+4x^2\)
\(A=-3x^3+4x^2+4x+3\)
\(B=3+x^3+4x^2+2x^3+7x-6x^3-8x+4\)
\(B=(3+4)+(x^3+2x^3-6x^3)+4x^2+(7x-8x)\)
\(B=7-3x^3+4x^2-x\)
\(B=-3x^3+4x^2-x+7\)
2) \(A-B=(-3x^3+4x^2+4x+3)-\) \((-3x^3+4x^2-x+7)\)
\(A-B=-3x^3+4x^2+4x+3+\)\(3x^3-4x^2+x-7\)
\(A-B\) \(=\left(-3x^3+3x^3\right)+\left(4x^2-4x^2\right)+\left(4x+x\right)+\left(3-7\right)\)
\(A-B\) \(=5x-4\)
Đặt tên cho đa thức \(5x-4\) là \(H\left(x\right)\)
Cho \(H\left(x\right)=0\)
hay \(5x-4=0\)
\(5x\) \(=0+4\)
\(5x\) \(=4\)
\(x\) \(=4:5\)
\(x\) \(=\) \(0,8\)
Vậy \(x=0,8\) không phải là nghiệm của H(\(x\))
MIK KHÔNG CHẮC LÀ CÂU 2 ĐÚNG
Thu gọn và sắp xếp các hạng tử của đa thức theo lũy thừa giảm dần của biến:
a) A(x)=x²-2x³+.3x²-6x+1/3-7x+6x²+2/3+3x⁴
b) B(x)=-x⁴+2x-1+2x⁴+3x³+2-x
Bài 7: Cho hai đa thức
M(x) = - 5x ^ 4 + 3x ^ 5 + x(x ^ 2 + 5) + 14x ^ 4 - 6x ^ 5 - x ^ 3 + x - 1
N(x) = x ^ 4 * (x - 5) - 3x ^ 3 + 3x + 2x ^ 5 - 4x ^ 4 + 3x ^ 3 - 5
a) Thu gọn và sắp xếp hai đa thức trên theo lũy thừa giảm dần của biến
b) Tinh H(x) = M(x) + N(x); G(x) = M(x) - N(x)
c) Tìm hệ số cao nhất và hệ số tự do của H(x) và G(x)
d) Tinh H(-1);H(1);G(1):G(0); H(- 3/2)
e) Tìm nghiệm của đa thức H(x)
`7,`
`a,`
\(M(x) = - 5x ^ 4 + 3x ^ 5 + x(x ^ 2 + 5) + 14x ^ 4 - 6x ^ 5 - x ^ 3 + x - 1 \)
\(M(x)=-5x^4+3x^5+x^3+5x+14x^4-6x^5-x^3+x-1\)
`M(x)=(3x^5-6x^5)+(-5x^4+14x^4)+(x^3-x^3)+(5x+x)-1`
`M(x)=-3x^5+9x^4+6x-1`
\(N(x)=x ^ 4 (x - 5) - 3x ^ 3 + 3x + 2x ^ 5 - 4x ^ 4 + 3x ^ 3 - 5 \)
\(N(x)=x^5-5x^4-3x^3+3x+2x^5-4x^4+3x^3-5\)
`N(x)=(x^5+2x^5)+(-5x^4-4x^4)+(-3x^3+3x^3)+3x-5`
`N(x)=3x^5-9x^4+3x-5`
`b,`
`H(x)=M(x)+N(x)`
\(H(x)=(-3x^5+9x^4+6x-1)+(3x^5-9x^4+3x-5) \)
`H(x)=-3x^5+9x^4+6x-1+3x^5-9x^4+3x-5`
`H(x)=(-3x^5+3x^5)+(9x^4-9x^4)+(6x+3x)+(-1-5)`
`H(x)=9x-6`
`G(x)=M(x)-N(x)`
\(G(x)=(-3x^5+9x^4+6x-1)-(3x^5-9x^4+3x-5)\)
`G(x)=-3x^5+9x^4+6x-1-3x^5+9x^4-3x+5`
`G(x)=(-3x^5-3x^5)+(9x^4+9x^4)+(6x-3x)+(-1+5)`
`G(x)=-6x^5+18x^4+3x+4`
`c,`
`H(x)=9x-6`
Hệ số cao nhất của đa thức: `9`
Hệ số tự do: `-6`
`G(x)=-6x^5+18x^4+3x+4`
Hệ số cao nhất của đa thức: `-6`
Hệ số tự do: `4`
`d,`
`H(-1)=9*(-1)-6=-9-6=-15`
`H(1)=9*1-6=9-6=3`
`G(1)=-6*1^5+18*1^4+3*1+4`
`G(1)=-6+18+3+4=12+3+4=15+4=19`
`G(0)=-6*0^5+18*0^4+3*0+4=4`
`H(-3/2)=9*(-3/2)-6=-27/2-6=-39/2`
`e,`
Đặt `H(x)=9x-6=0`
`-> 9x=0+6`
`-> 9x=6`
`-> x=6 \div 9`
`-> x=2/3`
Vậy, nghiệm của đa thức là `x=2/3.`
Cho đa thức:
\(A=x^4+2\left(3x^2-x\right)-2x^3+5x+2\)
Thu gọn và sắp xếp đa thức theo lũy thừa giảm dần của biến.
+ Thu gọn :
\(A=x^4+6x^2-2x-2x^3+5x+2\)
\(=x^4+6x^2-2x^3+3x+2\)
+ Sắp xếp giảm dần :
\(A=x^4-2x^3+6x^2+3x+2\)
Bài 4. Cho hai đa thức: P(x) = (4x + 1 - x ^ 2 + 2x ^ 3) - (x ^ 4 + 3x - x ^ 3 - 2x ^ 2 - 5) Q(x) = 3x ^ 4 + 2x ^ 5 - 3x - 5x ^ 4 - x ^ 5 + x + 2x ^ 5 - 1 a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm, dần của biển. b) Tính P(x) + 20(x) 3P(x) + 0(x)
Để thu gọn và sắp xếp các hạng tử của mỗi đa thức, ta cần thực hiện các bước sau:
Đối với đa thức P(x): P(x) = (4x + 1 - x^2 + 2x^3) - (x^4 + 3x - x^3 - 2x^2 - 5) = 4x + 1 - x^2 + 2x^3 - x^4 - 3x + x^3 + 2x^2 + 5 = -x^4 + 3x^3 + x^2 + x + 6
Đối với đa thức Q(x): Q(x) = 3x^4 + 2x^5 - 3x - 5x^4 - x^5 + x + 2x^5 - 1 = 2x^5 - x^5 + 3x^4 - 5x^4 + x - 3x - 1 = x^5 - 2x^4 - 2x - 1
Sau khi thu gọn và sắp xếp các hạng tử, ta có: P(x) = -x^4 + 3x^3 + x^2 + x + 6 Q(x) = x^5 - 2x^4 - 2x - 1
a: \(P\left(x\right)=\left(4x+1-x^2+2x^3\right)-\left(x^4+3x-x^3-2x^2-5\right)\)
\(=4x+1-x^2+2x^3-x^4-3x+x^3+2x^2+5\)
\(=-x^4+3x^3+x^2+x+6\)
\(Q\left(x\right)=3x^4+2x^5-3x-5x^4-x^5+x+2x^5-1\)
\(=\left(2x^5-x^5+2x^5\right)+\left(3x^4-5x^4\right)+\left(-3x+x\right)-1\)
\(=-x^5-2x^4-2x-1\)
b: Bạn ghi lại đề đi bạn
P(x)=5+x^3-2x+4x^3+3x^2-10
Q(x)=4-5x^3+2x^2-x^3+6x+11x^3-8x
a)Thu gọn và sắp xếp các đa thức trên theo lũy thừa giảm dần của biến
Tính P(x)+Q(x) , P(x)-Q(x)
b)Tìm nghiệm của đa thức P(x)-Q(x)
Bài 5: Cho A(x)= 7x³ + 3x⁴ - x² + 5x² - 6x³ - 2x⁴ - x³ + 2023
a) Thu gọn A(x) và sắp xếp theo lũy thừa giảm của biến
A= 7X³ + 3X⁴ - X² + 5X² - 6X³ - 2X⁴ - X³ + 2023
=> A= ( 3X⁴ - 2X⁴) + ( 7X³ - 6X³ - X³) + ( -X² + 5X²) + 2023
=> A= X⁴ + 3X² + 2023