\(x+\sqrt{5-x^2}+x\sqrt{5-x^2}=5\)
1. Tính : \(\dfrac{12}{4-\sqrt{10}}\)-6\(\sqrt{\dfrac{5}{2}}\)+\(\dfrac{5\sqrt{2}+\sqrt{10}}{\sqrt{5}+1}\)
2,Rút gọn:A=(\(\dfrac{\sqrt{x}}{\sqrt{x}-5}\)-\(\dfrac{5}{\sqrt{x}+5}\)+\(\dfrac{10\sqrt{x}}{25-x}\)):\(\dfrac{3}{\sqrt{x}+5}\)
1: \(=8+2\sqrt{10}-3\sqrt{10}+\sqrt{10}=8\)
1,Tính \(\dfrac{12}{4-\sqrt{10}}-6\sqrt{\dfrac{5}{2}}+\dfrac{5\sqrt{2}+\sqrt{10}}{\sqrt{5}+1}\)
2,Rút gọn:A=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{5}{\sqrt{x}+5}+\dfrac{10\sqrt{x}}{25-x}\right):\dfrac{3}{\sqrt{x}+5}\)
1: \(=8+2\sqrt{10}-3\sqrt{10}+\sqrt{10}=8\)
Rút gọn
\(\dfrac{x+2\sqrt{x}}{2\sqrt{x}+10}+\dfrac{\sqrt{x}-5}{\sqrt{x}}+\dfrac{50-5\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}+5\right)}\)
\(=\dfrac{\sqrt{x}\left(x+2\sqrt{x}\right)+2\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)+50-5\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}+5\right)}\\ =\dfrac{x\sqrt{x}+2x+2x-50+50-5\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}+5\right)}\\ =\dfrac{x\sqrt{x}-5\sqrt{x}+4x}{2\sqrt{x}\left(\sqrt{x}+5\right)}=\dfrac{\sqrt{x}\left(x+4\sqrt{x}-5\right)}{2\sqrt{x}\left(\sqrt{x}+5\right)}\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+5\right)}{2\sqrt{x}\left(\sqrt{x}+5\right)}=\dfrac{\sqrt{x}-1}{2}\)
\(\dfrac{x+2\sqrt{x}}{2\sqrt{x}+10}+\dfrac{\sqrt{x}-5}{\sqrt{x}}+\dfrac{50-5\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}+5\right)}\left(đk:x>0\right)\)
\(=\dfrac{\sqrt{x}\left(x+2\sqrt{x}\right)+2\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)+50-5\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}+5\right)}\)
\(=\dfrac{x\sqrt{x}+2x+2x-50+50-5\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}+5\right)}=\dfrac{x\sqrt{x}+4x-5\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}+5\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+5\right)}{2\sqrt{x}\left(\sqrt{x}+5\right)}=\dfrac{\sqrt{x}-1}{2}\)
\(\dfrac{6}{2-\sqrt{10}}-\dfrac{2\sqrt{5}-5\sqrt{2}}{\sqrt{2}-\sqrt{5}}+\sqrt{49+4\sqrt{10}}\)
\(\left(\dfrac{x-\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{x}\)
a: \(\dfrac{6}{2-\sqrt{10}}-\dfrac{2\sqrt{5}-5\sqrt{2}}{\sqrt{2}-\sqrt{5}}+\sqrt{49+4\sqrt{10}}\)
\(=\dfrac{6\left(2+\sqrt{10}\right)}{4-10}-\dfrac{\sqrt{10}\left(\sqrt{2}-\sqrt{5}\right)}{\sqrt{2}-\sqrt{5}}+\sqrt{49+2\cdot2\sqrt{10}}\)
\(=\dfrac{6\left(2+\sqrt{10}\right)}{-6}-\sqrt{10}+\sqrt{49+2\cdot\sqrt{40}}\)
\(=-2-\sqrt{10}-\sqrt{10}+\sqrt{49+4\sqrt{10}}\)
\(=-2-2\sqrt{10}+\sqrt{49+4\sqrt{10}}\)
b: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x< >1\end{matrix}\right.\)
\(\left(\dfrac{x-\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{x}\)
\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\cdot\dfrac{x}{\sqrt{x}+1}\)
\(=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\cdot\dfrac{x}{\sqrt{x}+1}\)
\(=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{x}{\sqrt{x}+1}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\cdot\sqrt{x}\cdot\sqrt{x}}{\sqrt{x}\cdot\left(\sqrt{x}+1\right)}\)
\(=\sqrt{x}\left(\sqrt{x}-1\right)\)
Giúp với
1) Thu gọn A
\(A=\left(\sqrt{x}-\dfrac{x+2}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{\sqrt{x}-4}{1-x}\right)\)
2) Tính A biết \(x=\left(\dfrac{2-\sqrt{5}}{2+\sqrt{5}}-\dfrac{2+\sqrt{5}}{2-\sqrt{5}}\right):\sqrt{20}\)
\(A=\dfrac{x+\sqrt{x}-x-2}{\sqrt{x}+1}:\dfrac{x-\sqrt{x}+\sqrt{x}-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\\ A=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\cdot\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)
\(x=\dfrac{9-4\sqrt{5}-9-4\sqrt{5}}{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}:2\sqrt{5}=\dfrac{-8\sqrt{5}}{-2\sqrt{5}}=4\\ \Leftrightarrow\sqrt{x}=2\\ \Leftrightarrow A=\dfrac{2-1}{2+2}=\dfrac{1}{4}\)
Giải phương trình:
1, \(x^2\sqrt{x}+\left(x-5\right)^2\sqrt{5-x}=11\left(\sqrt{x}+\sqrt{5-x}\right)\)
2, \(2x+1+x\sqrt{x^2+2}+\left(x+1\right)\sqrt{x^2+2x+3}=0\)
3, \(\sqrt{x+2-3\sqrt{2x-5}}+\sqrt{x-2+\sqrt{2x-5}}=2\sqrt{2}\)
4, \(\sqrt{x^2-\dfrac{1}{4x}}+\sqrt{x-\dfrac{1}{4x}}=x\)
5, \(\sqrt{5x^2+14x+9}-\sqrt{x^2-1-20}=5\sqrt{x+1}\)
1) x-\(7\sqrt{x-3}\) -9=0 2) \(\sqrt{x+3}\) =5-\(\sqrt{x-2}\) 3) \(\sqrt{x-4\sqrt{x+4}}\) =3 4) \(\sqrt{8-\dfrac{2}{3}x}-5\sqrt{2}\) =0 5) \(\sqrt{x^2-4x+4}\) =2-x
* Chứng minh đẳng thức
\(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}=2\sqrt{x-1}\) với x ≥ 2
* Trục căn thức ở mẫu
a.\(\dfrac{1}{\sqrt{5}+\sqrt{7}}\)
b.\(\dfrac{2}{5-\sqrt{2}-\sqrt{3}}\)
c.\(\dfrac{7}{\sqrt{5}-\sqrt{3}+\sqrt{5}}\)
\(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\)
\(=\sqrt{x-1-2\sqrt{x-1+1}}+\sqrt{x-1+2\sqrt{x-1}+1}\)
\(=\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}\)
\(=\left|\sqrt{x-1}-1\right|+\left|\sqrt{x-1}+1\right|\)
\(=\sqrt{x-1}-1+\sqrt{x-1}+1\left(x\ge2\right)=2\sqrt{x-1}\)
a) \(\dfrac{1}{\sqrt{5}+\sqrt{7}}=\dfrac{\sqrt{7}-\sqrt{5}}{\left(\sqrt{5}+\sqrt{7}\right)\left(\sqrt{7}-\sqrt{5}\right)}=\dfrac{\sqrt{7}-\sqrt{5}}{2}\)
c) \(\dfrac{7}{\sqrt{5}-\sqrt{3}+\sqrt{5}}=\dfrac{7}{2\sqrt{5}-\sqrt{3}}=\dfrac{7\left(2\sqrt{5}+\sqrt{3}\right)}{\left(2\sqrt{5}+\sqrt{3}\right)\left(2\sqrt{5}-\sqrt{3}\right)}\)
\(=\dfrac{14\sqrt{5}+7\sqrt{3}}{17}\)
B1: rút gọn:
a, \(\sqrt{4-2\sqrt{3}}-\sqrt{3}\)
b, \(\sqrt{11+6\sqrt[]{2}}-3+\sqrt{2}\)
c, \(x-4+\sqrt{16-8x+x^2}\) với x > 4
d, \(\dfrac{x^2-5}{x+\sqrt{5}}\) x khác \(-\sqrt{5}\)
e, \(\dfrac{x^2+2\sqrt{2}x+2}{x+\sqrt{2}}\) x khác \(-\sqrt{2}\)
g, \(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\)
giúp em với ạ , em cảm ơn
a) \(\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}=\sqrt{3}-1-\sqrt{3}=-1\)
b) \(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}=\sqrt{\left(3+\sqrt{2}\right)^2}-3+\sqrt{2}=3+\sqrt{2}-3+\sqrt{2}\)
\(=2\sqrt{2}\)
c) \(x-4+\sqrt{16-8x+x^2}=x-4+\sqrt{\left(x-4\right)^2}=x-4+\left|x-4\right|\)
\(=x-4+x-4\left(x>4\right)=2x-8\)
d) \(\dfrac{x^2-5}{x+\sqrt{5}}=\dfrac{\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)}{x+\sqrt{5}}=x-\sqrt{5}\)
e) \(\dfrac{x^2+2\sqrt{2}x+2}{x+\sqrt{2}}=\dfrac{\left(x+\sqrt{2}\right)^2}{x+\sqrt{2}}=x+\sqrt{2}\)
g) \(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}=\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}=\dfrac{1}{\sqrt{2}}\)
a) Ta có: \(\sqrt{4-2\sqrt{3}}-\sqrt{3}\)
\(=\sqrt{3}-1-\sqrt{3}\)
=-1
b) Ta có: \(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}\)
\(=3+\sqrt{2}-3+\sqrt{2}\)
\(=2\sqrt{2}\)
c) Ta có: \(x-4+\sqrt{x^2-8x+16}\)
\(=x-4+x-4=2x-8\)
d) Ta có: \(\dfrac{x^2-5}{x+\sqrt{5}}\)
\(=\dfrac{\left(x+\sqrt{5}\right)\left(x-\sqrt{5}\right)}{x+\sqrt{5}}\)
\(=x-\sqrt{5}\)
Giải phương trình:
1. \(\sqrt{\dfrac{42}{5-x}}+\sqrt{\dfrac{60}{7-x}}=6\)
2. \(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
3. \(x^2+x+12\sqrt{x+1}=36\)
4. \(\sqrt{x+2}-\sqrt{x-6}=2\)
5. \(\sqrt[3]{x-1}-\sqrt[3]{x-3}=\sqrt[3]{2}\)
6. \(5\sqrt{1+x^3}=2\left(x^2+2\right)\)
6. \(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\)
1.
ĐKXĐ: \(x< 5\)
\(\Leftrightarrow\sqrt{\dfrac{42}{5-x}}-3+\sqrt{\dfrac{60}{7-x}}-3=0\)
\(\Leftrightarrow\dfrac{\dfrac{42}{5-x}-9}{\sqrt{\dfrac{42}{5-x}}+3}+\dfrac{\dfrac{60}{7-x}-9}{\sqrt{\dfrac{60}{7-x}}+3}=0\)
\(\Leftrightarrow\dfrac{9x-3}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{9x-3}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}=0\)
\(\Leftrightarrow\left(9x-3\right)\left(\dfrac{1}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{1}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}\right)=0\)
\(\Leftrightarrow x=\dfrac{1}{3}\)
b.
ĐKXĐ: \(x\ge2\)
\(\sqrt{\left(x-2\right)\left(x-1\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)
\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}-\sqrt{x-2}+\sqrt{x+3}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{x-2}-\sqrt{x+3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-2=x+3\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow x=2\)
3.
ĐKXĐ: \(x\ge-1\)
\(x^2+x-12+12\left(\sqrt{x+1}-2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+4\right)+\dfrac{12\left(x-3\right)}{\sqrt{x+1}+2}=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+4+\dfrac{12}{\sqrt{x+1}+2}\right)=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)